Verwandte Artikel zu Practical Post-Quantum Signatures: FALCON and SOLMAE...

Practical Post-Quantum Signatures: FALCON and SOLMAE with Python (SpringerBriefs in Information Security and Cryptography) - Softcover

 
9783031812491: Practical Post-Quantum Signatures: FALCON and SOLMAE with Python (SpringerBriefs in Information Security and Cryptography)

Inhaltsangabe

The current digital signature methods like RSA, DSA, and ECDSA are relatively simple to understand, and their signing and verification processes operate in comparable time frames. However, in the quantum computing era, cryptographic methods must be designed to withstand both classical and quantum attacks. This requires an in-depth understanding of advanced mathematical concepts like algebraic geometry, lattice theory, Gaussian sampling, and efficient polynomial computation techniques such as FFT and NTT, which are essential for lattice-based cryptosystems.

The FALCON algorithm, chosen as a finalist in the NIST Post-Quantum Cryptography (PQC) standardization project, is a lattice-based, hash-and-sign digital signature scheme known for its efficiency and compactness compared to other quantum-resistant signatures like Dilithium and SPHINCS+. Following FALCON’s development, the SOLMAE algorithm was introduced in 2021, offering a simplified signing process within the same GPV framework and also implemented in Python for easier accessibility.

This monograph provides a practical and educational introduction to post-quantum digital signatures, focusing on the FALCON and SOLMAE algorithms. The material aims to bridge the gap between theory and practice, offering hands-on knowledge of post-quantum cryptographic techniques. With a focus on clear, practical examples using Python, this book is a valuable resource for anyone looking to understand or implement quantum-secure digital signatures.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Professor Kwangjo Kim, an influential figure in cryptography, earned his B.Sc. and M.Sc. from Yonsei University and a Ph.D. from Yokohama National University. He worked at ETRI from 1979 to 1997 and held visiting professorships at prestigious institutions like MIT and UCSD. After his retirement from KAIST in 2021, where he had served since 1998, he became President of the International Research Institute for Cyber Security (IRCS) and remains an Emeritus Professor at KAIST. Professor Kim has been a key contributor to the global cryptographic community, notably serving as a board member of the IACR, chairing the Asiacrypt Steering Committee, and organizing multiple high-profile conferences. Honored as the first Korean IACR Fellow, he co-authored key texts on deep learning and privacy-preserving technologies and was recognized among Stanford's Top 2% of Scientists in 2023. He has significantly advanced post-quantum cryptography with the development of the SOLMAE signature scheme and boasts an H-index of 48 with over 10,000 citations. His research spans cryptography, cybersecurity, and applications, with numerous patents to his name.Currently, appointment as, Adjunct Faculty at Cleveland State Univ, Ohio, USA from FY2025 to FY2028.

Von der hinteren Coverseite

The current digital signature methods like RSA, DSA, and ECDSA are relatively simple to understand, and their signing and verification processes operate in comparable time frames. However, in the quantum computing era, cryptographic methods must be designed to withstand both classical and quantum attacks. This requires an in-depth understanding of advanced mathematical concepts like algebraic geometry, lattice theory, Gaussian sampling, and efficient polynomial computation techniques such as FFT and NTT, which are essential for lattice-based cryptosystems.

The FALCON algorithm, chosen as a finalist in the NIST Post-Quantum Cryptography (PQC) standardization project, is a lattice-based, hash-and-sign digital signature scheme known for its efficiency and compactness compared to other quantum-resistant signatures like Dilithium and SPHINCS+. Following FALCON's development, the SOLMAE algorithm was introduced in 2021, offering a simplified signing process within the same GPV framework and also implemented in Python for easier accessibility.

This monograph provides a practical and educational introduction to post-quantum digital signatures, focusing on the FALCON and SOLMAE algorithms. The material aims to bridge the gap between theory and practice, offering hands-on knowledge of post-quantum cryptographic techniques. With a focus on clear, practical examples using Python, this book is a valuable resource for anyone looking to understand or implement quantum-secure digital signatures.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Practical Post-Quantum Signatures: FALCON and SOLMAE...

Beispielbild für diese ISBN

Kwangjo Kim
ISBN 10: 3031812492 ISBN 13: 9783031812491
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The current digital signature methods like RSA, DSA, and ECDSA are relatively simple to understand, and their signing and verification processes operate in comparable time frames. However, in the quantum computing era, cryptographic methods must be designed to withstand both classical and quantum attacks. This requires an in-depth understanding of advanced mathematical concepts like algebraic geometry, lattice theory, Gaussian sampling, and efficient polynomial computation techniques such as FFT and NTT, which are essential for lattice-based cryptosystems.The FALCON algorithm, chosen as a finalist in the NIST Post-Quantum Cryptography (PQC) standardization project, is a lattice-based, hash-and-sign digital signature scheme known for its efficiency and compactness compared to other quantum-resistant signatures like Dilithium and SPHINCS+. Following FALCON's development, the SOLMAE algorithm was introduced in 2021, offering a simplified signing process within the same GPV framework and also implemented in Python for easier accessibility.This monograph provides a practical and educational introduction to post-quantum digital signatures, focusing on the FALCON and SOLMAE algorithms. The material aims to bridge the gap between theory and practice, offering hands-on knowledge of post-quantum cryptographic techniques. With a focus on clear, practical examples using Python, this book is a valuable resource for anyone looking to understand or implement quantum-secure digital signatures. Artikel-Nr. 9783031812491

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kim, Kwangjo
Verlag: Springer, 2025
ISBN 10: 3031812492 ISBN 13: 9783031812491
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783031812491_new

Verkäufer kontaktieren

Neu kaufen

EUR 59,01
Währung umrechnen
Versand: EUR 5,76
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kim, Kwangjo
ISBN 10: 3031812492 ISBN 13: 9783031812491
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 104 pages. 9.25x6.10x9.21 inches. In Stock. Artikel-Nr. x-3031812492

Verkäufer kontaktieren

Neu kaufen

EUR 74,72
Währung umrechnen
Versand: EUR 11,57
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb