Verwandte Artikel zu Stochastic Network Optimization with Application to...

Stochastic Network Optimization with Application to Communication and Queueing Systems (Synthesis Lectures on Learning, Networks, and Algorithms) - Softcover

 
9783031799945: Stochastic Network Optimization with Application to Communication and Queueing Systems (Synthesis Lectures on Learning, Networks, and Algorithms)

Inhaltsangabe

This text presents a modern theory of analysis, control, and optimization for dynamic networks. Mathematical techniques of Lyapunov drift and Lyapunov optimization are developed and shown to enable constrained optimization of time averages in general stochastic systems. The focus is on communication and queueing systems, including wireless networks with time-varying channels, mobility, and randomly arriving traffic. A simple drift-plus-penalty framework is used to optimize time averages such as throughput, throughput-utility, power, and distortion. Explicit performance-delay tradeoffs are provided to illustrate the cost of approaching optimality. This theory is also applicable to problems in operations research and economics, where energy-efficient and profit-maximizing decisions must be made without knowing the future. Topics in the text include the following: - Queue stability theory - Backpressure, max-weight, and virtual queue methods - Primal-dual methods for non-convex stochasticutility maximization - Universal scheduling theory for arbitrary sample paths - Approximate and randomized scheduling theory - Optimization of renewal systems and Markov decision systems Detailed examples and numerous problem set questions are provided to reinforce the main concepts. Table of Contents: Introduction / Introduction to Queues / Dynamic Scheduling Example / Optimizing Time Averages / Optimizing Functions of Time Averages / Approximate Scheduling / Optimization of Renewal Systems / Conclusions

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Michael J. Neely received B.S. degrees in both Electrical Engineering and Mathematics from the University of Maryland, College Park, in 1997. He then received a 3 year Department of Defense NDSEG Fellowship for graduate study at the Massachusetts Institute of Technology, where he completed the M.S. degree in 1999 and the Ph.D. in 2003, both in Electrical Engineering. He joined the faculty of Electrical Engineering at the University of Southern California in 2004, where he is currently an Associate Professor. His research interests are in the areas of stochastic network optimization and queueing theory, with applications to wireless networks, mobile ad-hoc networks, and switching systems. Michael received the NSF Career award in 2008 and the Viterbi School of Engineering Junior Research Award in 2009. He is a member of Tau Beta Pi and Phi Beta Kappa.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781608454556: Stochastic Network Optimization with Application to Communication and Queueing Systems (Synthesis Lectures on Communication Networks)

Vorgestellte Ausgabe

ISBN 10:  160845455X ISBN 13:  9781608454556
Verlag: Morgan and Claypool Publishers, 2010
Softcover

Suchergebnisse für Stochastic Network Optimization with Application to...

Foto des Verkäufers

Michael Neely
ISBN 10: 3031799941 ISBN 13: 9783031799945
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This text presents a modern theory of analysis, control, and optimization for dynamic networks. Mathematical techniques of Lyapunov drift and Lyapunov optimization are developed and shown to enable constrained optimization of time averages in general stochastic systems. The focus is on communication and queueing systems, including wireless networks with time-varying channels, mobility, and randomly arriving traffic. A simple drift-plus-penalty framework is used to optimize time averages such as throughput, throughput-utility, power, and distortion. Explicit performance-delay tradeoffs are provided to illustrate the cost of approaching optimality. This theory is also applicable to problems in operations research and economics, where energy-efficient and profit-maximizing decisions must be made without knowing the future. Topics in the text include the following: - Queue stability theory - Backpressure, max-weight, and virtual queue methods - Primal-dual methods for non-convex stochasticutility maximization - Universal scheduling theory for arbitrary sample paths - Approximate and randomized scheduling theory - Optimization of renewal systems and Markov decision systems Detailed examples and numerous problem set questions are provided to reinforce the main concepts. Table of Contents: Introduction / Introduction to Queues / Dynamic Scheduling Example / Optimizing Time Averages / Optimizing Functions of Time Averages / Approximate Scheduling / Optimization of Renewal Systems / Conclusions. Artikel-Nr. 9783031799945

Verkäufer kontaktieren

Neu kaufen

EUR 32,09
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb