This book explores determinantal ideals of square matrices from the perspective of commutative algebra, with a particular emphasis on linear matrices. Its content has been extensively tested in several lectures given on various occasions, typically to audiences composed of commutative algebraists, algebraic geometers, and singularity theorists.
Traditionally, texts on this topic showcase determinantal rings as the main actors, emphasizing their properties as algebras. This book follows a different path, exploring the role of the ideal theory of minors in various situations―highlighting the use of Fitting ideals, for example. Topics include an introduction to the subject, explaining matrices and their ideals of minors, as well as classical and recent bounds for codimension. This is followed by examples of algebraic varieties defined by such ideals. The book also explores properties of matrices that impact their ideals of minors, such as the 1-generic property, explicitly presenting a criterion by Eisenbud. Additionally, the authors address the problem of the degeneration of generic matrices and their ideals of minors, along with applications to the dual varieties of some of the ideals.
Primarily intended for graduate students and scholars in the areas of commutative algebra, algebraic geometry, and singularity theory, the book can also be used in advanced seminars and as a source of aid. It is suitable for beginner graduate students who have completed a first course in commutative algebra.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Zaqueu Ramos is a Professor at the Federal University of Sergipe, Brazil. He holds a bachelor's degree in Mathematics from the Federal University of Sergipe, Brazil and a PhD degree in Mathematics from the Federal University of Pernambuco (2012). He completed his postdoctorate studies at the Federal University of Paraíba (2014-2015) under the supervision of Aron Simis. His research focuses on commutative algebra and its interactions with algebraic geometry.
Aron Simis is an Emeritus Full Professor at the Federal University of Pernambuco, Brazil. He earned his PhD from Queen's University, Canada, under the supervision of Paulo Ribenboim. He previously held a full professorship at IMPA, Rio de Janeiro, Brazil. He was President of the Brazilian Mathematical Society (1985-1987) and a member, on several occasions, of international commissions of the IMU (International Mathematical Union) and TWAS (Academy of Sciences for the Developing World). His main research interests include main structures in commutative algebra; projective varieties in algebraic geometry; aspects of algebraic combinatorics; special graded algebras; foundations of Rees algebras; cremona and birational maps; algebraic vector fields; and differential methods.
This book explores determinantal ideals of square matrices from the perspective of commutative algebra, with a particular emphasis on linear matrices. Its content has been extensively tested in several lectures given on various occasions, typically to audiences composed of commutative algebraists, algebraic geometers, and singularity theorists.
Traditionally, texts on this topic showcase determinantal rings as the main actors, emphasizing their properties as algebras. This book follows a different path, exploring the role of the ideal theory of minors in various situations--highlighting the use of Fitting ideals, for example. Topics include an introduction to the subject, explaining matrices and their ideals of minors, as well as classical and recent bounds for codimension. This is followed by examples of algebraic varieties defined by such ideals. The book also explores properties of matrices that impact their ideals of minors, such as the 1-generic property, explicitly presenting a criterion by Eisenbud. Additionally, the authors address the problem of the degeneration of generic matrices and their ideals of minors, along with applications to the dual varieties of some of the ideals.
Primarily intended for graduate students and scholars in the areas of commutative algebra, algebraic geometry, and singularity theory, the book can also be used in advanced seminars and as a source of aid. It is suitable for beginner graduate students who have completed a first course in commutative algebra.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book explores determinantal ideals of square matrices from the perspective of commutative algebra, with a particular emphasis on linear matrices. Its content has been extensively tested in several lectures given on various occasions, typically to audiences composed of commutative algebraists, algebraic geometers, and singularity theorists.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 340 pp. Englisch. Artikel-Nr. 9783031552830
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book explores determinantal ideals of square matrices from the perspective of commutative algebra, with a particular emphasis on linear matrices. Its content has been extensively tested in several lectures given on various occasions, typically to audiences composed of commutative algebraists, algebraic geometers, and singularity theorists.Traditionally, texts on this topic showcase determinantal rings as the main actors, emphasizing their properties as algebras. This book follows a different path, exploring the role of the ideal theory of minors in various situations-highlighting the use of Fitting ideals, for example. Topics include an introduction to the subject, explaining matrices and their ideals of minors, as well as classical and recent bounds for codimension. This is followed by examples of algebraic varieties defined by such ideals. The book also explores properties of matrices that impact their ideals of minors, such as the 1-generic property, explicitly presenting a criterion by Eisenbud. Additionally, the authors address the problem of the degeneration of generic matrices and their ideals of minors, along with applications to the dual varieties of some of the ideals.Primarily intended for graduate students and scholars in the areas of commutative algebra, algebraic geometry, and singularity theory, the book can also be used in advanced seminars and as a source of aid. It is suitable for beginner graduate students who have completed a first course in commutative algebra. Artikel-Nr. 9783031552830
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783031552830_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 338 pages. 9.25x6.10x9.21 inches. In Stock. Artikel-Nr. x-3031552830
Anzahl: 2 verfügbar