Verwandte Artikel zu Probability and Statistics for Machine Learning: A...

Probability and Statistics for Machine Learning: A Textbook - Hardcover

 
9783031532818: Probability and Statistics for Machine Learning: A Textbook

Inhaltsangabe

This book covers probability and statistics from the machine learning perspective. The chapters of this book belong to three categories:

1. The basics of probability and statistics: These chapters focus on the basics of probability and statistics, and cover the key principles of these topics. Chapter 1 provides an overview of the area of probability and statistics as well as its relationship to machine learning. The fundamentals of probability and statistics are covered in Chapters 2 through 5.

2. From probability to machine learning: Many machine learning applications are addressed using probabilistic models, whose parameters are then learned in a data-driven manner. Chapters 6 through 9 explore how different models from probability and statistics are applied to machine learning. Perhaps the most important tool that bridges the gap from data to probability is maximum-likelihood estimation, which is a foundational concept from the perspective of machine learning. This concept is explored repeatedly in these chapters.

3. Advanced topics: Chapter 10 is devoted to discrete-state Markov processes. It explores the application of probability and statistics to a temporal and sequential setting, although the applications extend to more complex settings such as graphical data. Chapter 11 covers a number of probabilistic inequalities and approximations.

The style of writing promotes the learning of probability and statistics simultaneously with a probabilistic perspective on the modeling of machine learning applications. The book contains over 200 worked examples in order to elucidate key concepts. Exercises are included both within the text of the chapters and at the end of the chapters. The book is written for a broad audience, including graduate students, researchers, and practitioners.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Charu C. Aggarwal is a Distinguished Research Staff Member (DRSM) at the IBM T. J. Watson Research Center in Yorktown Heights, New York. He completed his undergraduate degree in Computer Science from the Indian Institute of Technology at Kanpur in 1993 and his Ph.D. in Operations Research from the Massachusetts Institute of Technology in 1996. He has published more than 400 papers in refereed conferences and journals, and has applied for or been granted more than 80 patents. He is author or editor of 20 books, including textbooks on linear algebra, machine learning, neural networks, and outlier analysis. Because of the commercial value of his patents, he has thrice been designated a Master Inventor at IBM. He has received several awards, including the EDBT Test-of-Time Award (2014), the ACM SIGKDD Innovation Award (2019), the IEEE ICDM Research Contributions Award (2015), and the IIT Kanpur Distinguished Alumnus Award (2023).He is also a recipient of the W. Wallace McDowell Award, the highest award given solely by the IEEE Computer Society across the field of computer science. He has served as an editor-in-chief of ACM Books and is currently serving as an editor-in-chief of the ACM Transactions on Knowledge Discovery from Data. He is a fellow of the SIAM, ACM, and the IEEE, for“contributions to knowledge discovery and data mining algorithms.”

Von der hinteren Coverseite

This book covers probability and statistics from the machine learning perspective. The chapters of this book belong to three categories:

1. The basics of probability and statistics: These chapters focus on the basics of probability and statistics, and cover the key principles of these topics. Chapter 1 provides an overview of the area of probability and statistics as well as its relationship to machine learning. The fundamentals of probability and statistics are covered in Chapters 2 through 5.

2. From probability to machine learning: Many machine learning applications are addressed using probabilistic models, whose parameters are then learned in a data-driven manner. Chapters 6 through 9 explore how different models from probability and statistics are applied to machine learning. Perhaps the most important tool that bridges the gap from data to probability is maximum-likelihood estimation, which is a foundational concept from the perspective of machine learning. This concept is explored repeatedly in these chapters.

3. Advanced topics: Chapter 10 is devoted to discrete-state Markov processes. It explores the application of probability and statistics to a temporal and sequential setting, although the applications extend to more complex settings such as graphical data. Chapter 11 covers a number of probabilistic inequalities and approximations.

The style of writing promotes the learning of probability and statistics simultaneously with a probabilistic perspective on the modeling of machine learning applications. The book contains over 200 worked examples in order to elucidate key concepts. Exercises are included both within the text of the chapters and at the end of the chapters. The book is written for a broad audience, including graduate students, researchers, and practitioners.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Sehr gut
540 Seiten; 9783031532818.2 Gewicht...
Diesen Artikel anzeigen

EUR 61,50 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

EUR 13,72 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783031532849: Probability and Statistics for Machine Learning: A Textbook

Vorgestellte Ausgabe

ISBN 10:  3031532848 ISBN 13:  9783031532849
Verlag: Springer-Verlag GmbH, 2025
Softcover

Suchergebnisse für Probability and Statistics for Machine Learning: A...

Foto des Verkäufers

Aggarwal Charu, C.:
Verlag: Springer, 2024
ISBN 10: 3031532813 ISBN 13: 9783031532818
Gebraucht Hardcover

Anbieter: Studibuch, Stuttgart, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

hardcover. Zustand: Sehr gut. 540 Seiten; 9783031532818.2 Gewicht in Gramm: 2. Artikel-Nr. 956703

Verkäufer kontaktieren

Gebraucht kaufen

EUR 43,55
Währung umrechnen
Versand: EUR 61,50
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Aggarwal, Charu C.
Verlag: Springer, 2024
ISBN 10: 3031532813 ISBN 13: 9783031532818
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783031532818_new

Verkäufer kontaktieren

Neu kaufen

EUR 102,89
Währung umrechnen
Versand: EUR 13,72
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Aggarwal, Charu C.
ISBN 10: 3031532813 ISBN 13: 9783031532818
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 540 pages. 10.00x7.01x10.00 inches. In Stock. Artikel-Nr. x-3031532813

Verkäufer kontaktieren

Neu kaufen

EUR 106,72
Währung umrechnen
Versand: EUR 28,63
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Charu C. Aggarwal
ISBN 10: 3031532813 ISBN 13: 9783031532818
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -This book covers probability and statistics from the machine learning perspective. The chapters of this book belong to three categories:1. The basics of probability and statistics: These chapters focus on the basics of probability and statistics, and cover the key principles of these topics. Chapter 1 provides an overview of the area of probability and statistics as well as its relationship to machine learning. The fundamentals of probability and statistics are covered in Chapters 2 through 5.2. From probability to machine learning: Many machine learning applications are addressed using probabilistic models, whose parameters are then learned in a data-driven manner. Chapters 6 through 9 explore how different models from probability and statistics are applied to machine learning. Perhaps the most important tool that bridges the gap from data to probability is maximum-likelihood estimation, which is a foundational concept from the perspective of machine learning. This concept is explored repeatedly in these chapters.3. Advanced topics: Chapter 10 is devoted to discrete-state Markov processes. It explores the application of probability and statistics to a temporal and sequential setting, although the applications extend to more complex settings such as graphical data. Chapter 11 covers a number of probabilistic inequalities and approximations.The style of writing promotes the learning of probability and statistics simultaneously with a probabilistic perspective on the modeling of machine learning applications. The book contains over 200 worked examples in order to elucidate key concepts. Exercises are included both within the text of the chapters and at the end of the chapters. The book is written for a broad audience, including graduate students, researchers, and practitioners.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 540 pp. Englisch. Artikel-Nr. 9783031532818

Verkäufer kontaktieren

Neu kaufen

EUR 96,29
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb