Verwandte Artikel zu Metric Algebraic Geometry: 53 (Oberwolfach Seminars)

Metric Algebraic Geometry: 53 (Oberwolfach Seminars) - Softcover

 
9783031514616: Metric Algebraic Geometry: 53 (Oberwolfach Seminars)

Inhaltsangabe

Metric algebraic geometry combines concepts from algebraic geometry and differential geometry. Building on classical foundations, it offers practical tools for the 21st century. Many applied problems center around metric questions, such as optimization with respect to distances.

After a short dive into 19th-century geometry of plane curves, we turn to problems expressed by polynomial equations over the real numbers. The solution sets are real algebraic varieties. Many of our metric problems arise in data science, optimization and statistics. These include minimizing Wasserstein distances in machine learning, maximum likelihood estimation, computing curvature, or minimizing the Euclidean distance to a variety.

This book addresses a wide audience of researchers and students and can be used for a one-semester course at the graduate level. The key prerequisite is a solid foundation in undergraduate mathematics, especially in algebra and geometry.

This is an openaccess book.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Paul Breiding is professor for mathematical methods in data science at the University of Osnabrück, an Emmy-Noether Research Group Leader and member of the Academy of Sciences and Literature Mainz. In 2021 he received the Early Career Prize of the SIAM Activity Group on Algebraic Geometry. His interests lie in numerical and random algebraic geometry. He is one of the developers of the software HomotopyContinuation.jl.

Kathlén Kohn is a tenure-track assistant professor at KTH in Stockholm. Her research investigates the underlying geometry in computer-vision, machine-learning and statistical problems, using algebraic methods. For her research in computer vision, she received the Best Student Paper Award at the International Conference on Computer Vision (ICCV) in 2019 and the Swedish L'Oréal-Unesco for Women in Science prize in 2023.

After many years at UC Berkeley, Bernd Sturmfels now serves as a director at the Max-Planck Institute for Mathematics in the Sciences in Leipzig, Germany, where he leads the Nonlinear Algebra group. He has published 10 books and 300 articles, and he mentored 60 doctoral students, plus countless postdocs. His interests range from algebraic geometry and combinatorics to statistics, optimization and physics.

Von der hinteren Coverseite

Metric algebraic geometry combines concepts from algebraic geometry and differential geometry. Building on classical foundations, it offers practical tools for the 21st century. Many applied problems center around metric questions, such as optimization with respect to distances.

After a short dive into 19th-century geometry of plane curves, we turn to problems expressed by polynomial equations over the real numbers. The solution sets are real algebraic varieties. Many of our metric problems arise in data science, optimization and statistics. These include minimizing Wasserstein distances in machine learning, maximum likelihood estimation, computing curvature, or minimizing the Euclidean distance to a variety.

This book addresses a wide audience of researchers and students and can be used for a one-semester course at the graduate level. The key prerequisite is a solid foundation in undergraduate mathematics, especially in algebra and geometry.

This is an open access book.


„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Metric Algebraic Geometry: 53 (Oberwolfach Seminars)

Foto des Verkäufers

Paul Breiding
ISBN 10: 3031514610 ISBN 13: 9783031514616
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Metric algebraic geometry combines concepts from algebraic geometry and differential geometry. Building on classical foundations, it offers practical tools for the 21st century. Many applied problems center around metric questions, such as optimization with respect to distances.After a short dive into 19th-century geometry of plane curves, we turn to problems expressed by polynomial equations over the real numbers. The solution sets are real algebraic varieties.Many of our metric problems arise in data science, optimization and statistics. These include minimizing Wasserstein distances in machine learning, maximum likelihood estimation, computing curvature, or minimizing the Euclidean distance to a variety.This book addresses a wide audience of researchers and students and can be used for a one-semester course at the graduate level. The key prerequisite is a solid foundation in undergraduate mathematics, especially in algebra and geometry. This is an openaccess book. Artikel-Nr. 9783031514616

Verkäufer kontaktieren

Neu kaufen

EUR 42,79
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Paul Breiding
ISBN 10: 3031514610 ISBN 13: 9783031514616
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Metric algebraic geometry combines concepts from algebraic geometry and differential geometry. Building on classical foundations, it offers practical tools for the 21st century. Many applied problems center around metric questions, such as optimization with respect to distances.After a short dive into 19th-century geometry of plane curves, we turn to problems expressed by polynomial equations over the real numbers. The solution sets are real algebraic varieties. Many of our metric problems arise in data science, optimization and statistics. These include minimizing Wasserstein distances in machine learning, maximum likelihood estimation, computing curvature, or minimizing the Euclidean distance to a variety.This book addresses a wide audience of researchers and students and can be used for a one-semester course at the graduate level. The key prerequisite is a solid foundation in undergraduate mathematics, especially in algebra and geometry.This is an openaccess book.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 232 pp. Englisch. Artikel-Nr. 9783031514616

Verkäufer kontaktieren

Neu kaufen

EUR 42,79
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Breiding, Paul; Kohn, Kathlén; Sturmfels, Bernd
Verlag: Birkhäuser, 2024
ISBN 10: 3031514610 ISBN 13: 9783031514616
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783031514616_new

Verkäufer kontaktieren

Neu kaufen

EUR 48,81
Währung umrechnen
Versand: EUR 5,84
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kohn, Kathlén/ Breiding, Paul/ Sturmfels, Bernd
Verlag: Birkhauser, 2024
ISBN 10: 3031514610 ISBN 13: 9783031514616
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 229 pages. 9.25x6.10x0.49 inches. In Stock. Artikel-Nr. x-3031514610

Verkäufer kontaktieren

Neu kaufen

EUR 71,36
Währung umrechnen
Versand: EUR 11,72
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb