Verwandte Artikel zu Advances in Graph Neural Networks (Synthesis Lectures...

Advances in Graph Neural Networks (Synthesis Lectures on Data Mining and Knowledge Discovery) - Softcover

 
9783031161766: Advances in Graph Neural Networks (Synthesis Lectures on Data Mining and Knowledge Discovery)

Inhaltsangabe

This book provides a comprehensive introduction to the foundations and frontiers of graph neural networks. In addition, the book introduces the basic concepts and definitions in graph representation learning and discusses the development of advanced graph representation learning methods with a focus on graph neural networks. The book providers researchers and practitioners with an understanding of the fundamental issues as well as a launch point for discussing the latest trends in the science. The authors emphasize several frontier aspects of graph neural networks and utilize graph data to describe pairwise relations for real-world data from many different domains, including social science, chemistry, and biology. Several frontiers of graph neural networks are introduced, which enable readers to acquire the needed techniques of advances in graph neural networks via theoretical models and real-world applications. 

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Chuan Shi, PhD., is a Professor and Deputy Director of Beijing Key Lab of Intelligent Telecommunications Software and Multimedia at the Beijing University of Posts and Telecommunications.  He received his B.S. from Jilin University in 2001, his M.S. from Wuhan University in 2004, and his Ph.D. from the ICT of Chinese Academic of Sciences in 2007.  His research interests include data mining, machine learning, and evolutionary computing. He has published more than 100 papers in refereed journals and conferences.
Xiao Wang, Ph.D., is an Associate Professor in the School of Computer Science at the Beijing University of Posts and Telecommunications. He received his Ph.D. from the School of Computer Science and Technology at Tianjin University in 2016. He was a postdoctoral researcher in the Department of Computer Science and Technology at Tsinghua University.  His current research interests include data mining, social network analysis, and machine learning. He has published more than 70 papers in refereed journals and conferences.
Cheng Yang, Ph.D., is an Associate Professor at the Beijing University of Posts and Telecommunications. He received his B.E. and Ph.D. from Tsinghua University in 2014 and 2019, respectively. His research interests include natural language processing and network representation learning. He has published more than 20 top-level papers in international journals and conferences including ACM TOIS, EMNLP, IJCAI, and AAAI.

Von der hinteren Coverseite

This book provides a comprehensive introduction to the foundations and frontiers of graph neural networks. In addition, the book introduces the basic concepts and definitions in graph representation learning and discusses the development of advanced graph representation learning methods with a focus on graph neural networks. The book providers researchers and practitioners with an understanding of the fundamental issues as well as a launch point for discussing the latest trends in the science. The authors emphasize several frontier aspects of graph neural networks and utilize graph data to describe pairwise relations for real-world data from many different domains, including social science, chemistry, and biology. Several frontiers of graph neural networks are introduced, which enable readers to acquire the needed techniques of advances in graph neural networks via theoretical models and real-world applications.


In addition, this book:

  • Provides a comprehensive introduction to the foundations and frontiers of graph neural networks and also summarizes the basic concepts and terminology in graph modeling
  • Utilizes graph data to describe pairwise relations for real-world data from many different domains, including social science, chemistry, and biology
  • Presents heterogeneous graph representation learning alongside homogeneous graph representation and Euclidean graph neural networks methods 

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2023
  • ISBN 10 3031161769
  • ISBN 13 9783031161766
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten212
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783031161735: Advances in Graph Neural Networks (Synthesis Lectures on Data Mining and Knowledge Discovery)

Vorgestellte Ausgabe

ISBN 10:  3031161734 ISBN 13:  9783031161735
Verlag: Springer-Verlag GmbH, 2022
Hardcover

Suchergebnisse für Advances in Graph Neural Networks (Synthesis Lectures...

Foto des Verkäufers

Chuan Shi
ISBN 10: 3031161769 ISBN 13: 9783031161766
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a comprehensive introduction to the foundations and frontiers of graph neural networks. In addition, the book introduces the basic concepts and definitions in graph representation learning and discusses the development of advanced graph representation learning methods with a focus on graph neural networks. The book providers researchers and practitioners with an understanding of the fundamental issues as well as a launch point for discussing the latest trends in the science. The authors emphasize several frontier aspects of graph neural networks and utilize graph data to describe pairwise relations for real-world data from many different domains, including social science, chemistry, and biology. Several frontiers of graph neural networks are introduced, which enable readers to acquire the needed techniques of advances in graph neural networks via theoretical models and real-world applications. Artikel-Nr. 9783031161766

Verkäufer kontaktieren

Neu kaufen

EUR 64,19
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Shi, Chuan; Wang, Xiao; Yang, Cheng
Verlag: Springer, 2023
ISBN 10: 3031161769 ISBN 13: 9783031161766
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783031161766_new

Verkäufer kontaktieren

Neu kaufen

EUR 68,63
Währung umrechnen
Versand: EUR 5,92
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Shi, Chuan/ Wang, Xiao/ Yang, Cheng
Verlag: Springer Nature, 2023
ISBN 10: 3031161769 ISBN 13: 9783031161766
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 212 pages. 9.45x6.61x0.48 inches. In Stock. Artikel-Nr. x-3031161769

Verkäufer kontaktieren

Neu kaufen

EUR 93,86
Währung umrechnen
Versand: EUR 11,89
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb