This book provides a comprehensive discussion and new insights about linear optimization of content metrics to improve the automatic Evaluation of Text Summaries (ETS). The reader is first introduced to the background and fundamentals of the ETS. Afterward, state-of-the-art evaluation methods that require or do not require human references are described. Based on how linear optimization has improved other natural language processing tasks, we developed a new methodology based on genetic algorithms that optimize content metrics linearly. Under this optimization, we propose SECO-SEVA as an automatic evaluation metric available for research purposes. Finally, the text finishes with a consideration of directions in which automatic evaluation could be improved in the future. The information provided in this book is self-contained. Therefore, the reader does not require an exhaustive background in this area. Moreover, we consider this book the first one that deals with the ETS in depth.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This book provides a comprehensive discussion and new insights about linear optimization of content metrics to improve the automatic Evaluation of Text Summaries (ETS). The reader is first introduced to the background and fundamentals of the ETS. Afterward, state-of-the-art evaluation methods that require or do not require human references are described. Based on how linear optimization has improved other natural language processing tasks, we developed a new methodology based on genetic algorithms that optimize content metrics linearly. Under this optimization, we propose SECO-SEVA as an automatic evaluation metric available for research purposes. Finally, the text finishes with a consideration of directions in which automatic evaluation could be improved in the future. The information provided in this book is self-contained. Therefore, the reader does not require an exhaustive background in this area. Moreover, we consider this book the first one that deals with the ETS in depth.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a comprehensive discussion and new insights about linear optimization of content metrics to improve the automatic Evaluation of Text Summaries (ETS). The reader is first introduced to the background and fundamentals of the ETS. Afterward, state-of-the-art evaluation methods that require or do not require human references are described. Based on how linear optimization has improved other natural language processing tasks, we developed a new methodology based on genetic algorithms that optimize content metrics linearly. Under this optimization, we propose SECO-SEVA as an automatic evaluation metric available for research purposes. Finally, the text finishes with a consideration of directions in which automatic evaluation could be improved in the future. The information provided in this book is self-contained. Therefore, the reader does not require an exhaustive background in this area. Moreover, we consider this book the first one that deals with the ETS in depth. Artikel-Nr. 9783031072161
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783031072161_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 228 pages. 9.25x6.10x0.49 inches. In Stock. Artikel-Nr. x-3031072162
Anzahl: 2 verfügbar