Verwandte Artikel zu Population-Based Optimization on Riemannian Manifolds:...

Population-Based Optimization on Riemannian Manifolds: 1046 (Studies in Computational Intelligence) - Softcover

 
9783031042959: Population-Based Optimization on Riemannian Manifolds: 1046 (Studies in Computational Intelligence)

Inhaltsangabe

Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold. 

Manifold optimization methods mainly focus on adapting existing optimization methods from the usual "easy-to-deal-with" Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry.

This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space.

This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds.


Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold.

Manifold optimization methods mainly focus on adapting existing optimization methods from the usual "easy-to-deal-with" Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry.

This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space.

This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds.


„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2023
  • ISBN 10 3031042956
  • ISBN 13 9783031042959
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten180
  • Kontakt zum HerstellerNicht verfügbar

EUR 5,95 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783031042928: Population-Based Optimization on Riemannian Manifolds: 1046 (Studies in Computational Intelligence)

Vorgestellte Ausgabe

ISBN 10:  3031042921 ISBN 13:  9783031042928
Verlag: Springer, 2022
Hardcover

Suchergebnisse für Population-Based Optimization on Riemannian Manifolds:...

Beispielbild für diese ISBN

Fong, Robert Simon; Tino, Peter
Verlag: Springer, 2023
ISBN 10: 3031042956 ISBN 13: 9783031042959
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783031042959_new

Verkäufer kontaktieren

Neu kaufen

EUR 75,41
Währung umrechnen
Versand: EUR 5,95
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Peter Tino
ISBN 10: 3031042956 ISBN 13: 9783031042959
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Manifold optimization is an emerging field of contemporary optimization thatconstructs efficient and robust algorithms by exploiting the specific geometricalstructure of the search space. In our case the search space takes the form of amanifold.Manifold optimization methods mainly focus on adapting existing optimizationmethods from the usual 'easy-to-deal-with' Euclidean search spaces to manifoldswhose local geometry can be defined e.g. by a Riemannian structure. In this waythe form of the adapted algorithms can stay unchanged. However, to accommodatethe adaptation process, assumptions on the search space manifold often have tobe made. In addition, the computations and estimations are confined by the localgeometry.This book presents a framework for population-based optimization on Riemannianmanifolds that overcomes both the constraints of locality and additional assumptions.Multi-modal, black-box manifold optimization problems on Riemannian manifoldscan be tackled using zero-order stochastic optimization methods from a geometricalperspective, utilizing both the statistical geometry of the decision spaceand Riemannian geometry of the search space.This monograph presents in a self-contained manner both theoretical and empiricalaspects ofstochastic population-based optimization on abstract Riemannianmanifolds. Artikel-Nr. 9783031042959

Verkäufer kontaktieren

Neu kaufen

EUR 139,09
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fong, Robert Simon/ Tino, Peter
Verlag: Springer Nature, 2023
ISBN 10: 3031042956 ISBN 13: 9783031042959
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 179 pages. 9.25x6.10x0.39 inches. In Stock. Artikel-Nr. x-3031042956

Verkäufer kontaktieren

Neu kaufen

EUR 196,71
Währung umrechnen
Versand: EUR 11,96
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb