Verwandte Artikel zu Statistics is Easy: Case Studies on Real Scientific...

Statistics is Easy: Case Studies on Real Scientific Datasets (Synthesis Lectures on Mathematics & Statistics) - Softcover

 
9783031013058: Statistics is Easy: Case Studies on Real Scientific Datasets (Synthesis Lectures on Mathematics & Statistics)

Inhaltsangabe

Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Manpreet Singh Katari is a Clinical Associate Professor and the Coordinator of Computational Studies in the Biology Department of New York University. In addition to teaching courses ranging from Statistics, Programming, Machine Learning, and Analysis of Next-Generation Sequencing Data, he also collaborates with researchers in the area of Plant Systems Biology. His main passion is in developing software that empowers researchers to analyze, integrate, and visualize large-scale genomic datasets. Although his work has been primarily in the model plant species Arabidopsis thaliana he has applied his knowledge to many crops, such as Rice, Corn, Banana, and Cassava, and also to human disease datasets such as cancer.Sudarshini Tyagi is currently a software engineer at Goldman Sachs where she uses machine learning particularly natural language processing and statistics to detect anomalies in financial regulations. She received her Master’s degree in Computer Science from Courant Institute of Mathematical Sciences at New York University, where she wrote a thesis on visually detecting breast cancers from mammograms. She also holds a Bachelor’s degree in Computer Science from Rashtreeya Vidyalaya College of Engineering, Bengaluru.Dennis Shasha is a Julius Silver Professor of Computer Science at the Courant Institute of New York University and an Associate Director of NYU Wireless. In addition to his long fascination with nonparametric statistics, he works on meta-algorithms for machine learning to achieve guaranteed correctness rates; with biologists on pattern discovery for network inference; with physicists and financial people on algorithms for time series; on database tuning; and tree and graph matching. Because he likes to type, he has written six books of puzzles about a mathematical detective named Dr. Ecco, a biography about great computer scientists, and a book about the future of computing. He has also written technical books about database tuning, biological pattern recognition, time series, DNA computing, resampling statistics, and causal inference in molecular networks. He has written the puzzle column for various publications including Scientific American, Dr. Dobb’s Journal, and currently the Communications of the ACM. He is a fellow of the ACM and an INRIA International Chair.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 13,80 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

Suchergebnisse für Statistics is Easy: Case Studies on Real Scientific...

Beispielbild für diese ISBN

Katari, Manpreet Singh; Tyagi, Sudarshini; Shasha, Dennis
Verlag: Springer, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In English. Artikel-Nr. ria9783031013058_new

Verkäufer kontaktieren

Neu kaufen

EUR 26,98
Währung umrechnen
Versand: EUR 13,80
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Katari, Manpreet Singh/ Tyagi, Sudarshini/ Shasha, Dennis
Verlag: Springer Nature, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 73 pages. 9.25x7.51x0.16 inches. In Stock. Artikel-Nr. x-3031013050

Verkäufer kontaktieren

Neu kaufen

EUR 32,16
Währung umrechnen
Versand: EUR 28,80
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Manpreet Singh Katari
ISBN 10: 3031013050 ISBN 13: 9783031013058
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 76 pp. Englisch. Artikel-Nr. 9783031013058

Verkäufer kontaktieren

Neu kaufen

EUR 21,39
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Manpreet Singh Katari
ISBN 10: 3031013050 ISBN 13: 9783031013058
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use. Artikel-Nr. 9783031013058

Verkäufer kontaktieren

Neu kaufen

EUR 21,39
Währung umrechnen
Versand: EUR 60,81
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb