Verwandte Artikel zu Information Retrieval Models: Foundations & Relationship...

Information Retrieval Models: Foundations & Relationships (Synthesis Lectures on Information Concepts, Retrieval, and Services) - Softcover

 
9783031012006: Information Retrieval Models: Foundations & Relationships (Synthesis Lectures on Information Concepts, Retrieval, and Services)

Inhaltsangabe

Information Retrieval (IR) models are a core component of IR research and IR systems. The past decade brought a consolidation of the family of IR models, which by 2000 consisted of relatively isolated views on TF-IDF (Term-Frequency times Inverse-Document-Frequency) as the weighting scheme in the vector-space model (VSM), the probabilistic relevance framework (PRF), the binary independence retrieval (BIR) model, BM25 (Best-Match Version 25, the main instantiation of the PRF/BIR), and language modelling (LM). Also, the early 2000s saw the arrival of divergence from randomness (DFR). Regarding intuition and simplicity, though LM is clear from a probabilistic point of view, several people stated: "It is easy to understand TF-IDF and BM25. For LM, however, we understand the math, but we do not fully understand why it works." This book takes a horizontal approach gathering the foundations of TF-IDF, PRF, BIR, Poisson, BM25, LM, probabilistic inference networks (PIN's), and divergence-basedmodels. The aim is to create a consolidated and balanced view on the main models. A particular focus of this book is on the "relationships between models." This includes an overview over the main frameworks (PRF, logical IR, VSM, generalized VSM) and a pairing of TF-IDF with other models. It becomes evident that TF-IDF and LM measure the same, namely the dependence (overlap) between document and query. The Poisson probability helps to establish probabilistic, non-heuristic roots for TF-IDF, and the Poisson parameter, average term frequency, is a binding link between several retrieval models and model parameters. Table of Contents: List of Figures / Preface / Acknowledgments / Introduction / Foundations of IR Models / Relationships Between IR Models / Summary & Research Outlook / Bibliography / Author's Biography / Index

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Thomas Roelleke holds a Dr rer nat (Ph.D.) and a Diplom der Ingenieur-Informatik (MSc in Engineering & Computer Science) of the University of Dortmund. After school education in Meschede, Germany, he attended the b.i.b., the Nixdorf Computer school for professions in informatics, in Paderborn. Nixdorf Computer awarded him a sales and management trainee program, after which he was appointed as product consultant in the Unix/DB/4GL marketing of Nixdorf Computer. He studied Diplom-Ingenieur-Informatik at the University of Dortmund (UniDo), and was later a lecturer/researcher at UniDo. His research focused on probabilistic reasoning and knowledge representations, hypermedia retrieval, and the integration of retrieval and database technologies. His lecturing included information/database systems, object-oriented design and programming, and software engineering. He obtained his Ph.D. in 1999 for the thesis titled "POOL: A probabilistic object-oriented logic for the representation and retrieval of complex objects - a model for hypermedia retrieval." Since 1999, he has been working as a strategic IT consultant, founder and director of small businesses, research fellow, and lecturer at the Queen Mary University of London (QMUL). Research contributions include a probabilistic relational algebra (PRA), a probabilistic object-oriented logic (POOL), the relational Bayes, a matrix-based framework for IR, a parallel derivation of IR models, a probabilistic interpretation of the BM25-TF based on "semi-subsumed" event occurrences, and theoretical studies of retrieval models. Thomas Roelleke lives in England, in a village in the middle between buzzy London and beautiful East Anglia.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781627050784: Information Retrieval Models: Foundations and Relationships (Synthesis Lectures on Information Concepts, Retrieval, and Services)

Vorgestellte Ausgabe

ISBN 10:  1627050787 ISBN 13:  9781627050784
Verlag: Morgan & Claypool Publishers, 2013
Softcover

Suchergebnisse für Information Retrieval Models: Foundations & Relationship...

Foto des Verkäufers

Thomas Roelleke
ISBN 10: 3031012003 ISBN 13: 9783031012006
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Information Retrieval (IR) models are a core component of IR research and IR systems. The past decade brought a consolidation of the family of IR models, which by 2000 consisted of relatively isolated views on TF-IDF (Term-Frequency times Inverse-Document-Frequency) as the weighting scheme in the vector-space model (VSM), the probabilistic relevance framework (PRF), the binary independence retrieval (BIR) model, BM25 (Best-Match Version 25, the main instantiation of the PRF/BIR), and language modelling (LM). Also, the early 2000s saw the arrival of divergence from randomness (DFR). Regarding intuition and simplicity, though LM is clear from a probabilistic point of view, several people stated: 'It is easy to understand TF-IDF and BM25. For LM, however, we understand the math, but we do not fully understand why it works.' This book takes a horizontal approach gathering the foundations of TF-IDF, PRF, BIR, Poisson, BM25, LM, probabilistic inference networks (PIN's), and divergence-basedmodels. The aim is to create a consolidated and balanced view on the main models. A particular focus of this book is on the 'relationships between models.' This includes an overview over the main frameworks (PRF, logical IR, VSM, generalized VSM) and a pairing of TF-IDF with other models. It becomes evident that TF-IDF and LM measure the same, namely the dependence (overlap) between document and query. The Poisson probability helps to establish probabilistic, non-heuristic roots for TF-IDF, and the Poisson parameter, average term frequency, is a binding link between several retrieval models and model parameters. Table of Contents: List of Figures / Preface / Acknowledgments / Introduction / Foundations of IR Models / Relationships Between IR Models / Summary & Research Outlook / Bibliography / Author's Biography / Index. Artikel-Nr. 9783031012006

Verkäufer kontaktieren

Neu kaufen

EUR 35,30
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Thomas Roelleke
ISBN 10: 3031012003 ISBN 13: 9783031012006
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Information Retrieval (IR) models are a core component of IR research and IR systems. The past decade brought a consolidation of the family of IR models, which by 2000 consisted of relatively isolated views on TF-IDF (Term-Frequency times Inverse-Document-Frequency) as the weighting scheme in the vector-space model (VSM), the probabilistic relevance framework (PRF), the binary independence retrieval (BIR) model, BM25 (Best-Match Version 25, the main instantiation of the PRF/BIR), and language modelling (LM). Also, the early 2000s saw the arrival of divergence from randomness (DFR). Regarding intuition and simplicity, though LM is clear from a probabilistic point of view, several people stated: 'It is easy to understand TF-IDF and BM25. For LM, however, we understand the math, but we do not fully understand why it works.' This book takes a horizontal approach gathering the foundations of TF-IDF, PRF, BIR, Poisson, BM25, LM, probabilistic inference networks (PIN's), and divergence-basedmodels. The aim is to create a consolidated and balanced view on the main models. A particular focus of this book is on the 'relationships between models.' This includes an overview over the main frameworks (PRF, logical IR, VSM, generalized VSM) and a pairing of TF-IDF with other models. It becomes evident that TF-IDF and LM measure the same, namely the dependence (overlap) between document and query. The Poisson probability helps to establish probabilistic, non-heuristic roots for TF-IDF, and the Poisson parameter, average term frequency, is a binding link between several retrieval models and model parameters. Table of Contents: List of Figures / Preface / Acknowledgments / Introduction / Foundations of IR Models / Relationships Between IR Models / Summary & Research Outlook / Bibliography / Author's Biography / IndexSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 164 pp. Englisch. Artikel-Nr. 9783031012006

Verkäufer kontaktieren

Neu kaufen

EUR 35,30
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Roelleke, Thomas
Verlag: Springer, 2013
ISBN 10: 3031012003 ISBN 13: 9783031012006
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In English. Artikel-Nr. ria9783031012006_new

Verkäufer kontaktieren

Neu kaufen

EUR 39,53
Währung umrechnen
Versand: EUR 5,77
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb