Verwandte Artikel zu Semi-Supervised Learning and Domain Adaptation in Natural...

Semi-Supervised Learning and Domain Adaptation in Natural Language Processing (Synthesis Lectures on Human Language Technologies) - Softcover

 
9783031010217: Semi-Supervised Learning and Domain Adaptation in Natural Language Processing (Synthesis Lectures on Human Language Technologies)

Inhaltsangabe

This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias. This book is intended to be both readable by first-year students and interesting to the expert audience. My intention was to introduce what is necessary to appreciate the major challenges we face in contemporary NLP related to data sparsity and sampling bias, without wasting too much time on details about supervised learning algorithms or particular NLP applications. I use text classification, part-of-speech tagging, and dependency parsing as running examples, and limit myself to a small set of cardinal learning algorithms. I have worried less about theoretical guarantees ("this algorithm never does too badly") than about useful rules of thumb ("in this case this algorithm may perform really well"). In NLP, data is so noisy, biased, and non-stationary that few theoretical guarantees can be established and we are typically left with our gut feelings and a catalogue of crazy ideas. I hope this book will provide its readers with both. Throughout the book we include snippets of Python code and empirical evaluations, when relevant.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Anders Søgaard is a father of three and a published poet, as well as a Full Professor in Computer Science the University of Copenhagen. He is currently funded by the Novo Nordisk Foundation, the Lundbeck Foundation, and the Innovation Fund Denmark; before that, he held an ERC Starting Grant and a Google Focused Research Award. He has won best paper awards at NAACL, EACL, CoNLL, etc. He previously wrote Semi-Supervised Learning and Domain Adaptation in NLP (Morgan & Claypool, 2013) and Cross-Lingual Word Embeddings (Morgan & Claypool, 2019), the latter with co-authors Ivan Vulic, Sebastian Ruder, and Manaal Faruqui.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2013
  • ISBN 10 3031010213
  • ISBN 13 9783031010217
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten104
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781608459858: Semi-Supervised Learning and Domain Adaptation in Natural Language Processing (Synthesis Lectures on Human Language Technologies)

Vorgestellte Ausgabe

ISBN 10:  1608459853 ISBN 13:  9781608459858
Verlag: Morgan & Claypool Publishers, 2013
Softcover

Suchergebnisse für Semi-Supervised Learning and Domain Adaptation in Natural...

Foto des Verkäufers

Anders Søgaard
ISBN 10: 3031010213 ISBN 13: 9783031010217
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias. This book is intended to be both readable by first-year students and interesting to the expert audience. My intention was to introduce what is necessary to appreciate the major challenges we face in contemporary NLP related to data sparsity and sampling bias, without wasting too much time on details about supervised learning algorithms or particular NLP applications. I use text classification, part-of-speech tagging, and dependency parsing as running examples, and limit myself to a small set of cardinal learning algorithms. I have worried less about theoretical guarantees ('this algorithm never does too badly') than about useful rules of thumb ('in this case this algorithm may perform really well'). In NLP, data is so noisy, biased, and non-stationary that few theoretical guarantees can be established and we are typically left with our gut feelings and a catalogue of crazy ideas. I hope this book will provide its readers with both. Throughout the book we include snippets of Python code and empirical evaluations, when relevant. Artikel-Nr. 9783031010217

Verkäufer kontaktieren

Neu kaufen

EUR 26,74
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Anders Søgaard
ISBN 10: 3031010213 ISBN 13: 9783031010217
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book introduces basic supervised learning algorithms applicable to natural language processing (NLP) and shows how the performance of these algorithms can often be improved by exploiting the marginal distribution of large amounts of unlabeled data. One reason for that is data sparsity, i.e., the limited amounts of data we have available in NLP. However, in most real-world NLP applications our labeled data is also heavily biased. This book introduces extensions of supervised learning algorithms to cope with data sparsity and different kinds of sampling bias. This book is intended to be both readable by first-year students and interesting to the expert audience. My intention was to introduce what is necessary to appreciate the major challenges we face in contemporary NLP related to data sparsity and sampling bias, without wasting too much time on details about supervised learning algorithms or particular NLP applications. I use text classification, part-of-speech tagging, and dependency parsing as running examples, and limit myself to a small set of cardinal learning algorithms. I have worried less about theoretical guarantees ('this algorithm never does too badly') than about useful rules of thumb ('in this case this algorithm may perform really well'). In NLP, data is so noisy, biased, and non-stationary that few theoretical guarantees can be established and we are typically left with our gut feelings and a catalogue of crazy ideas. I hope this book will provide its readers with both. Throughout the book we include snippets of Python code and empirical evaluations, when relevant.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 104 pp. Englisch. Artikel-Nr. 9783031010217

Verkäufer kontaktieren

Neu kaufen

EUR 26,74
Währung umrechnen
Versand: EUR 1,99
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Søgaard, Anders
Verlag: Springer, 2013
ISBN 10: 3031010213 ISBN 13: 9783031010217
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783031010217_new

Verkäufer kontaktieren

Neu kaufen

EUR 32,22
Währung umrechnen
Versand: EUR 5,85
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb