Verwandte Artikel zu Probabilistic Approaches to Recommendations (Synthesis...

Probabilistic Approaches to Recommendations (Synthesis Lectures on Data Mining and Knowledge Discovery) - Softcover

 
9783031007781: Probabilistic Approaches to Recommendations (Synthesis Lectures on Data Mining and Knowledge Discovery)
  • VerlagSpringer
  • Erscheinungsdatum2014
  • ISBN 10 3031007786
  • ISBN 13 9783031007781
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten200

EUR 14,24 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781627052573: Probabilistic Approaches to Recommendations (Synthesis Lectures on Data Mining and Knowledge Discovery)

Vorgestellte Ausgabe

ISBN 10:  1627052577 ISBN 13:  9781627052573
Verlag: Morgan & Claypool Publishers, 2014
Softcover

Suchergebnisse für Probabilistic Approaches to Recommendations (Synthesis...

Beispielbild für diese ISBN

Barbieri, Nicola; Manco, Giuseppe; Ritacco, Ettore
Verlag: Springer, 2014
ISBN 10: 3031007786 ISBN 13: 9783031007781
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783031007781_new

Verkäufer kontaktieren

Neu kaufen

EUR 43,12
Währung umrechnen
Versand: EUR 14,24
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Nicola Barbieri
ISBN 10: 3031007786 ISBN 13: 9783031007781
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The importance of accurate recommender systems has been widely recognized by academia and industry, and recommendation is rapidly becoming one of the most successful applications of data mining and machine learning. Understanding and predicting the choices and preferences of users is a challenging task: real-world scenarios involve users behaving in complex situations, where prior beliefs, specific tendencies, and reciprocal influences jointly contribute to determining the preferences of users toward huge amounts of information, services, and products. Probabilistic modeling represents a robust formal mathematical framework to model these assumptions and study their effects in the recommendation process. This book starts with a brief summary of the recommendation problem and its challenges and a review of some widely used techniques Next, we introduce and discuss probabilistic approaches for modeling preference data. We focus our attention on methods based on latent factors, such as mixture models, probabilistic matrix factorization, and topic models, for explicit and implicit preference data. These methods represent a significant advance in the research and technology of recommendation. The resulting models allow us to identify complex patterns in preference data, which can be exploited to predict future purchases effectively. The extreme sparsity of preference data poses serious challenges to the modeling of user preferences, especially in the cases where few observations are available. Bayesian inference techniques elegantly address the need for regularization, and their integration with latent factor modeling helps to boost the performances of the basic techniques. We summarize the strengths and weakness of several approaches by considering two different but related evaluation perspectives, namely, rating prediction and recommendation accuracy. Furthermore, we describe how probabilistic methods based on latent factors enable the exploitation of preference patterns in novel applications beyond rating prediction or recommendation accuracy. We finally discuss the application of probabilistic techniques in two additional scenarios, characterized by the availability of side information besides preference data. In summary, the book categorizes the myriad probabilistic approaches to recommendations and provides guidelines for their adoption in real-world situations. Artikel-Nr. 9783031007781

Verkäufer kontaktieren

Neu kaufen

EUR 37,44
Währung umrechnen
Versand: EUR 29,91
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb