Verwandte Artikel zu Deep Learning for Computer Architects (Synthesis Lectures...

Deep Learning for Computer Architects (Synthesis Lectures on Computer Architecture) - Softcover

 
9783031006289: Deep Learning for Computer Architects (Synthesis Lectures on Computer Architecture)
  • VerlagSpringer
  • Erscheinungsdatum2017
  • ISBN 10 3031006283
  • ISBN 13 9783031006289
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten124

EUR 14,11 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

Suchergebnisse für Deep Learning for Computer Architects (Synthesis Lectures...

Beispielbild für diese ISBN

Reagen, Brandon; Adolf, Robert; Whatmough, Paul; Wei, Gu-Yeon; Brooks, David
Verlag: Springer, 2017
ISBN 10: 3031006283 ISBN 13: 9783031006289
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783031006289_new

Verkäufer kontaktieren

Neu kaufen

EUR 60,06
Währung umrechnen
Versand: EUR 14,11
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Brandon Reagen
ISBN 10: 3031006283 ISBN 13: 9783031006289
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Machine learning, and specifically deep learning, has been hugely disruptive in many fields of computer science. The success of deep learning techniques in solving notoriously difficult classification and regression problems has resulted in their rapid adoption in solving real-world problems. The emergence of deep learning is widely attributed to a virtuous cycle whereby fundamental advancements in training deeper models were enabled by the availability of massive datasets and high-performance computer hardware.This text serves as a primer for computer architects in a new and rapidly evolving field. We review how machine learning has evolved since its inception in the 1960s and track the key developments leading up to the emergence of the powerful deep learning techniques that emerged in the last decade. Next we review representative workloads, including the most commonly used datasets and seminal networks across a variety of domains. In addition to discussing the workloadsthemselves, we also detail the most popular deep learning tools and show how aspiring practitioners can use the tools with the workloads to characterize and optimize DNNs.The remainder of the book is dedicated to the design and optimization of hardware and architectures for machine learning. As high-performance hardware was so instrumental in the success of machine learning becoming a practical solution, this chapter recounts a variety of optimizations proposed recently to further improve future designs. Finally, we present a review of recent research published in the area as well as a taxonomy to help readers understand how various contributions fall in context. Artikel-Nr. 9783031006289

Verkäufer kontaktieren

Neu kaufen

EUR 58,84
Währung umrechnen
Versand: EUR 29,23
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb