This textbook is a comprehensive and yet accessible introduction to non-Euclidean Laguerre geometry, for which there exists no previous systematic presentation in the literature. Moreover, we present new results by demonstrating all essential features of Laguerre geometry on the example of checkerboard incircular nets.
Classical (Euclidean) Laguerre geometry studies oriented hyperplanes, oriented hyperspheres, and their oriented contact in Euclidean space. We describe how this can be generalized to arbitrary Cayley-Klein spaces, in particular hyperbolic and elliptic space, and study the corresponding groups of Laguerre transformations. We give an introduction to Lie geometry and describe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Alexander Bobenko is a professor at the Technische Universität Berlin. He is an author with Yuri Suris of the book „Discrete Differential Geometry“, and editor of several books in geometry and mathematical physics. He is the Coordinator of the DFG Collaboration Research Center „Discretization in Geometry and Dynamics“.
Carl Lutz is a doctoral student at Technische Universität Berlin. He wrote his master thesis under the supervision of Alexander Bobenko on the topic “Laguerre Geometry in Space Forms”.
Helmut Pottmann is a professor at King Abdullah University of Science and Technology in Saudi Arabia and at Technische Universität Wien. He has co-authored two books (“Computational Line Geometry” and “Architectural Geometry”) and has been founding director of the Visual Computing Center at KAUST and the Center for Geometry and Computational Design at TU Wien.
Jan Techter is a postdoc at Technische Universität Berlin. He wrote his doctoral thesis under the supervision of Alexander Bobenko on the topic “Discrete Confocal Quadrics and Checkerboard Incircular Nets”.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This textbook is a comprehensive and yet accessible introduction to non-Euclidean Laguerre geometry, for which there exists no previous systematic presentation in the literature. Moreover, we present new results by demonstrating all essential features of Laguerre geometry on the example of checkerboard incircular nets.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 148 pp. Englisch. Artikel-Nr. 9783030818463
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook is a comprehensive and yet accessible introduction to non-Euclidean Laguerregeometry, for which there exists no previous systematic presentation in the literature. Moreover, we present new results by demonstrating all essential features of Laguerre geometry on theexample of checkerboard incircular nets.Classical (Euclidean) Laguerre geometry studies oriented hyperplanes, oriented hyperspheres, and their oriented contact in Euclidean space. We describe how this can be generalized to arbitrary Cayley-Klein spaces, in particular hyperbolic and elliptic space, and study the corresponding groups of Laguerre transformations. We give an introduction to Lie geometry and describe how these Laguerre geometries can be obtained as subgeometries. As an application of two-dimensional Lie and Laguerre geometry we study the properties of checkerboard incircular nets. Artikel-Nr. 9783030818463
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9783030818463_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 147 pages. 9.25x6.10x0.35 inches. In Stock. Artikel-Nr. x-3030818462
Anzahl: 2 verfügbar