Verwandte Artikel zu Explainable AI Within the Digital Transformation and...

Explainable AI Within the Digital Transformation and Cyber Physical Systems: XAI Methods and Applications - Softcover

 
9783030764111: Explainable AI Within the Digital Transformation and Cyber Physical Systems: XAI Methods and Applications

Inhaltsangabe

This book presents Explainable Artificial Intelligence (XAI), which aims at producing explainable models that enable human users to understand and appropriately trust the obtained results. The authors discuss the challenges involved in making machine learning-based AI explainable. Firstly, that the explanations must be adapted to different stakeholders (end-users, policy makers, industries, utilities etc.) with different levels of technical knowledge (managers, engineers, technicians, etc.) in different application domains. Secondly, that it is important to develop an evaluation framework and standards in order to measure the effectiveness of the provided explanations at the human and the technical levels. This book gathers research contributions aiming at the development and/or the use of XAI techniques in order to address the aforementioned challenges in different applications such as healthcare, finance, cybersecurity, and document summarization. It allows highlighting the benefitsand requirements of using explainable models in different application domains in order to provide guidance to readers to select the most adapted models to their specified problem and conditions.

  • Includes recent developments of the use of Explainable Artificial Intelligence (XAI) in order to address the challenges of digital transition and cyber-physical systems;
  • Provides a textual scientific description of the use of XAI in order to address the challenges of digital transition and cyber-physical systems;
  • Presents examples and case studies in order to increase transparency and understanding of the methodological concepts.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Moamar Sayed-Mouchaweh received his Master degree from the University of Technology of Compiegne-France in 1999, PhD degree from the University of Reims-France in December 2002, and the Habilitation to Direct Researches (HDR) in Computer science, Control and Signal processing in December 2008. Since September 2011, he is working as a Full Professor in the High National Engineering School of Mines-Telecom Lille-Douai in France. He edited and wrote several Springer books, served as member of Editorial Board, IPC, conference, workshop and tutorial chair for different international conferences, an invited speaker, a guest editor of several special issues of international journals targeting the use of advanced artificial intelligence techniques and tools for digital transformation (energy transition and industry 4.0). He served and is serving as an expert for the evaluation of industrial and research projects in the domain of digital transformation. He is leading an inter-disciplinary and industry based research theme around the use of advanced Artificial Intelligence techniques in order to address the challenges of energy transition and Industry 4.0.

Von der hinteren Coverseite

This book presents Explainable Artificial Intelligence (XAI), which aims at producing explainable models that enable human users to understand and appropriately trust the obtained results. The authors discuss the challenges involved in making machine learning-based AI explainable. Firstly, that the explanations must be adapted to different stakeholders (end-users, policy makers, industries, utilities etc.) with different levels of technical knowledge (managers, engineers, technicians, etc.) in different application domains. Secondly, that it is important to develop an evaluation framework and standards in order to measure the effectiveness of the provided explanations at the human and the technical levels. This book gathers research contributions aiming at the development and/or the use of XAI techniques in order to address the aforementioned challenges in different applications such as healthcare, finance, cybersecurity, and document summarization. It allows highlighting the benefits and requirements of using explainable models in different application domains in order to provide guidance to readers to select the most adapted models to their specified problem and conditions.

  • Includes recent developments of the use of Explainable Artificial Intelligence (XAI) in order to address the challenges of digital transition and cyber-physical systems;
  • Provides a textual scientific description of the use of XAI in order to address the challenges of digital transition and cyber-physical systems;
  • Presents examples and case studies in order to increase transparency and understanding of the methodological concepts.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 5,75 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783030764081: Explainable AI Within the Digital Transformation and Cyber Physical Systems: XAI Methods and Applications

Vorgestellte Ausgabe

ISBN 10:  3030764087 ISBN 13:  9783030764081
Verlag: Springer-Verlag GmbH, 2021
Hardcover

Suchergebnisse für Explainable AI Within the Digital Transformation and...

Beispielbild für diese ISBN

Verlag: Springer, 2022
ISBN 10: 3030764117 ISBN 13: 9783030764111
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783030764111_new

Verkäufer kontaktieren

Neu kaufen

EUR 183,43
Währung umrechnen
Versand: EUR 5,75
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Moamar Sayed-Mouchaweh
ISBN 10: 3030764117 ISBN 13: 9783030764111
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents Explainable Artificial Intelligence (XAI), which aims at producing explainable models that enable human users to understand and appropriately trust the obtained results. The authors discuss the challenges involved in making machine learning-based AI explainable. Firstly, that the explanations must be adapted to different stakeholders (end-users, policy makers, industries, utilities etc.) with different levels of technical knowledge (managers, engineers, technicians, etc.) in different application domains. Secondly, that it is important to develop an evaluation framework and standards in order to measure the effectiveness of the provided explanations at the human and the technical levels. This book gathers research contributions aiming at the development and/or the use of XAI techniques in order to address the aforementioned challenges in different applications such as healthcare, finance, cybersecurity, and document summarization. It allows highlighting the benefitsand requirements of using explainable models in different application domains in order to provide guidance to readers to select the most adapted models to their specified problem and conditions.Includes recent developments of the use of Explainable Artificial Intelligence (XAI) in order to address the challenges of digital transition and cyber-physical systems;Provides a textual scientific description of the use of XAI in order to address the challenges of digital transition and cyber-physical systems;Presents examples and case studies in order to increase transparency and understanding of the methodological concepts. Artikel-Nr. 9783030764111

Verkäufer kontaktieren

Neu kaufen

EUR 192,59
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sayed-Mouchaweh, Moamar (Editor)
Verlag: Springer, 2022
ISBN 10: 3030764117 ISBN 13: 9783030764111
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 208 pages. 9.25x6.10x0.55 inches. In Stock. Artikel-Nr. x-3030764117

Verkäufer kontaktieren

Neu kaufen

EUR 271,56
Währung umrechnen
Versand: EUR 11,55
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb