This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Göran Kauermann is a Professor of Statistics at the Department of Statistics and Chair of the Elite Master’s Program in Data Science at the LMU Munich, Germany. He is a recognized expert in applied statistics. He previously served as Editor-in-Chief of AStA Advances in Statistical Analysis, a journal of the German Statistical Society.
Helmut Küchenhoff is a Professor of Statistics at the Department of Statistics and Head of the Statistical Consulting Unit (StaBLab) at the LMU Munich, Germany. He has extensive experience in working on practical statistical projects in science and industry. His teaching focuses on practical work, where students engage in practical projects with real-world problems.
Christian Heumann is a Professor at the Department of Statistics, LMU Munich, Germany, where he teaches students in both the Bachelor’s and Master’s programs. His research interests include statistical modeling, computational statistics and methods for missing data, also in connection with causal inference. Recently, he has begun exploring statistical methods in natural language processing.
This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master’s students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-28339
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 401021536
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 369 pages. 9.25x6.10x1.06 inches. In Stock. Artikel-Nr. x-3030698297
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Statistical Foundations, Reasoning and Inference | For Science and Data Science | Göran Kauermann (u. a.) | Taschenbuch | xiii | Englisch | 2022 | Springer | EAN 9783030698294 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 124266640
Anzahl: 5 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook provides a comprehensive introduction to statistical principles, concepts and methods that are essential in modern statistics and data science. The topics covered include likelihood-based inference, Bayesian statistics, regression, statistical tests and the quantification of uncertainty. Moreover, the book addresses statistical ideas that are useful in modern data analytics, including bootstrapping, modeling of multivariate distributions, missing data analysis, causality as well as principles of experimental design. The textbook includes sufficient material for a two-semester course and is intended for master's students in data science, statistics and computer science with a rudimentary grasp of probability theory. It will also be useful for data science practitioners who want to strengthen their statistics skills. Artikel-Nr. 9783030698294
Anzahl: 1 verfügbar