Universal Time-Series Forecasting with Mixture Predictors (SpringerBriefs in Computer Science) - Softcover

Ryabko, Daniil

 
9783030543037: Universal Time-Series Forecasting with Mixture Predictors (SpringerBriefs in Computer Science)

Inhaltsangabe

The author considers the problem of sequential probability forecasting in the most general setting, where the observed data may exhibit an arbitrary form of stochastic dependence. All the results presented are theoretical, but they concern the foundations of some problems in such applied areas as machine learning, information theory and data compression.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Dr. Daniil Ryabko (HDR) has a full-time position at INRIA, he has recently been on research assignments in Belize and Madagascar.

Von der hinteren Coverseite

The author considers the problem of sequential probability forecasting in the most general setting, where the observed data may exhibit an arbitrary form of stochastic dependence. All the results presented are theoretical, but they concern the foundations of some problems in such applied areas as machine learning, information theory and data compression.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9783030543051: Universal Time-Series Forecasting with Mixture Predictors

Vorgestellte Ausgabe

ISBN 10:  3030543056 ISBN 13:  9783030543051
Verlag: Springer, 2020
Softcover