Verwandte Artikel zu Data Science and Productivity Analytics: 290 (International...

Data Science and Productivity Analytics: 290 (International Series in Operations Research & Management Science) - Hardcover

 
9783030433833: Data Science and Productivity Analytics: 290 (International Series in Operations Research & Management Science)

Inhaltsangabe

This book includes a spectrum of concepts, such as performance, productivity, operations research, econometrics, and data science, for the practically and theoretically important areas of 'productivity analysis/data envelopment analysis' and 'data science/big data'. Data science is defined as the collection of scientific methods, processes, and systems dedicated to extracting knowledge or insights from data and it develops on concepts from various domains, containing mathematics and statistical methods, operations research, machine learning, computer programming, pattern recognition, and data visualisation, among others.

Examples of data science techniques include linear and logistic regressions, decision trees, Naïve Bayesian classifier, principal component analysis, neural networks, predictive modelling, deep learning, text analysis, survival analysis, and so on, all of which allow using the data to make more intelligent decisions. On the other hand, it is without a doubt that nowadays the amount of data is exponentially increasing, and analysing large data sets has become a key basis of competition and innovation, underpinning new waves of productivity growth. This book aims to bring a fresh look onto the various ways that data science techniques could unleash value and drive productivity from these mountains of data.

Researchers working in productivity analysis/data envelopment analysis will benefit from learning about the tools available in data science/big data that can be used in their current research analyses and endeavours. The data scientists, on the other hand, will also get benefit from learning about the plethora of applications available in productivity analysis/data envelopment analysis.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Vincent Charles is an experienced researcher in the field of Artificial Intelligence and Management Science, currently with the School of Management, University of Bradford. He has more than two decades of teaching, research, and consultancy experience, having been a full professor and director of research for more than a decade. He has published over 130 research outputs. He is a recipient of many international academic honours and awards.
Juan Aparicio is an Associate Professor at the Department of Statistics, Mathematics an Information Technology of the University Miguel Hernandez, Elche (Alicante), Spain. He is the director of the Center of Operations Research and is also Co-Chair (with Knox Lovell) of the Santander Chair on Efficiency and Productivity. He has published over 100 research contributions, mainly on Data Envelopment Analysis, Efficiency and Productivity Analysis.
Joe Zhu is Professor of Operations Analytics in the Foisie Business School, Worcester Polytechnic Institute. He is an internationally recognized expert in methods of performance evaluation and benchmarking using Data Envelopment Analysis (DEA), and his research interests are in the areas of operations and business analytics, productivity modeling, and performance evaluation and benchmarking. He has published and co-edited several books focusing on performance evaluation and benchmarking using DEA and developed the DEA Frontier software.

Von der hinteren Coverseite

<p>This book includes a spectrum of concepts, such as performance, productivity, operations research, econometrics, and data science, for the practically and theoretically important areas of ‘productivity analysis/data envelopment analysis’ and ‘data science/big data’. Data science is defined as the collection of scientific methods, processes, and systems dedicated to extracting knowledge or insights from data and it develops on concepts from various domains, containing mathematics and statistical methods, operations research, machine learning, computer programming, pattern recognition, and data visualisation, among others.</p><p>Examples of data science techniques include linear and logistic regressions, decision trees, Naïve Bayesian classifier, principal component analysis, neural networks, predictive modelling, deep learning, text analysis, survival analysis, and so on, all of which allow using the data to make more intelligent decisions. On the other hand, it is without a doubt that nowadays the amount of data is exponentially increasing, and analysing large data sets has become a key basis of competition and innovation, underpinning new waves of productivity growth. This book aims to bring a fresh look onto the various ways that data science techniques could unleash value and drive productivity from these mountains of data.</p><p>Researchers working in productivity analysis/data envelopment analysis will benefit from learning about the tools available in data science/big data that can be used in their current research analyses and endeavours. The data scientists, on the other hand, will also get benefit from learning about the plethora of applications available in productivity analysis/data envelopment analysis.</p><div><p></p></div>

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 5,77 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783030433864: Data Science and Productivity Analytics: 290 (International Series in Operations Research & Management Science)

Vorgestellte Ausgabe

ISBN 10:  3030433862 ISBN 13:  9783030433864
Verlag: Springer, 2021
Softcover

Suchergebnisse für Data Science and Productivity Analytics: 290 (International...

Beispielbild für diese ISBN

Charles
Verlag: Springer, 2020
ISBN 10: 3030433838 ISBN 13: 9783030433833
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783030433833_new

Verkäufer kontaktieren

Neu kaufen

EUR 153,79
Währung umrechnen
Versand: EUR 5,77
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Vincent Charles
ISBN 10: 3030433838 ISBN 13: 9783030433833
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -This book includes a spectrum of concepts, such as performance, productivity, operations research, econometrics, and data science, for the practically and theoretically important areas of ¿productivity analysis/data envelopment analysis¿ and ¿data science/big datä. Data science is defined as the collection of scientific methods, processes, and systems dedicated to extracting knowledge or insights from data and it develops on concepts from various domains, containing mathematics and statistical methods, operations research, machine learning, computer programming, pattern recognition, and data visualisation, among others.Examples of data science techniques include linear and logistic regressions, decision trees, Naïve Bayesian classifier, principal component analysis, neural networks, predictive modelling, deep learning, text analysis, survival analysis, and so on, all of which allow using the data to make more intelligent decisions. On the other hand, it is without a doubtthat nowadays the amount of data is exponentially increasing, and analysing large data sets has become a key basis of competition and innovation, underpinning new waves of productivity growth. This book aims to bring a fresh look onto the various ways that data science techniques could unleash value and drive productivity from these mountains of data.Researchers working in productivity analysis/data envelopment analysis will benefit from learning about the tools available in data science/big data that can be used in their current research analyses and endeavours. The data scientists, on the other hand, will also get benefit from learning about the plethora of applications available in productivity analysis/data envelopment analysis.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 452 pp. Englisch. Artikel-Nr. 9783030433833

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Vincent Charles
ISBN 10: 3030433838 ISBN 13: 9783030433833
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book includes a spectrum of concepts, such as performance, productivity, operations research, econometrics, and data science, for the practically and theoretically important areas of 'productivity analysis/data envelopment analysis' and 'data science/big data'. Data science is defined as the collection of scientific methods, processes, and systems dedicated to extracting knowledge or insights from data and it develops on concepts from various domains, containing mathematics and statistical methods, operations research, machine learning, computer programming, pattern recognition, and data visualisation, among others.Examples of data science techniques include linear and logistic regressions, decision trees, Naïve Bayesian classifier, principal component analysis, neural networks, predictive modelling, deep learning, text analysis, survival analysis, and so on, all of which allow using the data to make more intelligent decisions. On the other hand, it is without a doubtthat nowadays the amount of data is exponentially increasing, and analysing large data sets has become a key basis of competition and innovation, underpinning new waves of productivity growth. This book aims to bring a fresh look onto the various ways that data science techniques could unleash value and drive productivity from these mountains of data.Researchers working in productivity analysis/data envelopment analysis will benefit from learning about the tools available in data science/big data that can be used in their current research analyses and endeavours. The data scientists, on the other hand, will also get benefit from learning about the plethora of applications available in productivity analysis/data envelopment analysis. Artikel-Nr. 9783030433833

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Charles, Vincent (Edited by)/ Aparicio, Juan (Edited by)/ Zhu, Joe (Edited by)
Verlag: Springer, 2020
ISBN 10: 3030433838 ISBN 13: 9783030433833
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 449 pages. 9.25x6.10x1.20 inches. In Stock. Artikel-Nr. x-3030433838

Verkäufer kontaktieren

Neu kaufen

EUR 234,12
Währung umrechnen
Versand: EUR 11,59
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb