Verwandte Artikel zu Explainable AI: Interpreting, Explaining and Visualizing...

Explainable AI: Interpreting, Explaining and Visualizing Deep Learning: 11700 (Lecture Notes in Artificial Intelligence) - Softcover

 
9783030289539: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning: 11700 (Lecture Notes in Artificial Intelligence)

Inhaltsangabe

The development of "intelligent" systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to "intelligent" machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner.

The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

The development of “intelligent” systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to “intelligent” machines. Forsensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner.

The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Befriedigend
Minor shelf wear/ creasing on cover...
Diesen Artikel anzeigen

EUR 12,51 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

EUR 5,70 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783030289553: Explainable AI: Interpreting, Explaining and Visualizing Deep Learning

Vorgestellte Ausgabe

ISBN 10:  3030289559 ISBN 13:  9783030289553
Verlag: Springer, 2019
Softcover

Suchergebnisse für Explainable AI: Interpreting, Explaining and Visualizing...

Beispielbild für diese ISBN

Verlag: Springer, 2019
ISBN 10: 3030289532 ISBN 13: 9783030289539
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783030289539_new

Verkäufer kontaktieren

Neu kaufen

EUR 53,82
Währung umrechnen
Versand: EUR 5,70
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2019
ISBN 10: 3030289532 ISBN 13: 9783030289539
Gebraucht Paperback

Anbieter: Books From California, Simi Valley, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Good. Minor shelf wear/ creasing on cover. Artikel-Nr. mon0003781739

Verkäufer kontaktieren

Gebraucht kaufen

EUR 71,86
Währung umrechnen
Versand: EUR 12,51
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Wojciech Samek
ISBN 10: 3030289532 ISBN 13: 9783030289539
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -The development of ¿intelligent¿ systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to ¿intelligent¿ machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner.The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 452 pp. Englisch. Artikel-Nr. 9783030289539

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Wojciech Samek
ISBN 10: 3030289532 ISBN 13: 9783030289539
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The development of 'intelligent' systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to 'intelligent' machines. Forsensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue toperform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner.The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications ofinterpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems;evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI. Artikel-Nr. 9783030289539

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Samek, Wojciech (Editor)/ Montavon, Grégoire (Editor)/ Vedaldi, Andrea (Editor)/ Hansen, Lars Kai (Editor)/ Müller, Klaus-robert (Editor)
ISBN 10: 3030289532 ISBN 13: 9783030289539
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 438 pages. 9.50x6.25x0.75 inches. In Stock. Artikel-Nr. x-3030289532

Verkäufer kontaktieren

Neu kaufen

EUR 155,57
Währung umrechnen
Versand: EUR 11,45
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb