Verwandte Artikel zu Inpainting and Denoising Challenges (The Springer Series...

Inpainting and Denoising Challenges (The Springer Series on Challenges in Machine Learning) - Softcover

 
9783030256166: Inpainting and Denoising Challenges (The Springer Series on Challenges in Machine Learning)

Inhaltsangabe

The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting. 

Inpainting and Denoising Challenges comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration. 

This volume starts with a wide review on image denoising, retracing and comparing various methods from the pioneer signal processing methods, to machine learning approaches with sparse and low-rank models, and recent deep learning architectures with autoencoders and variants. The following chapterspresent results from the Challenge, including three competition tasks at WCCI and ECML 2018. The top best approaches submitted by participants are described, showing interesting contributions and innovating methods. The last two chapters propose novel contributions and highlight new applications that benefit from image/video inpainting. 

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting. 

Inpainting and Denoising Challenges comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration. 

This volume starts with a wide review on image denoising, retracing and comparing various methods from the pioneer signal processing methods, to machine learning approaches with sparse and low-rank models, and recent deep learning architectures with autoencoders and variants. The following chapters present results from the Challenge, including three competition tasks at WCCI and ECML 2018. The top best approaches submitted by participants are described, showing interesting contributions and innovating methods. The last two chapters propose novel contributions and highlight new applications that benefit from image/video inpainting. 

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 13,72 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783030256135: Inpainting and Denoising Challenges (The Springer Series on Challenges in Machine Learning)

Vorgestellte Ausgabe

ISBN 10:  3030256138 ISBN 13:  9783030256135
Verlag: Springer, 2019
Hardcover

Suchergebnisse für Inpainting and Denoising Challenges (The Springer Series...

Beispielbild für diese ISBN

Verlag: Springer, 2020
ISBN 10: 3030256162 ISBN 13: 9783030256166
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9783030256166_new

Verkäufer kontaktieren

Neu kaufen

EUR 59,95
Währung umrechnen
Versand: EUR 13,72
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Escalera, Sergio (Editor)/ Ayache, Stephane (Editor)/ Wan, Jun (Editor)/ Madadi, Meysam (Editor)/ Güçlü, Umut (Editor)
ISBN 10: 3030256162 ISBN 13: 9783030256166
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 152 pages. 9.25x6.10x0.36 inches. In Stock. Artikel-Nr. x-3030256162

Verkäufer kontaktieren

Neu kaufen

EUR 75,13
Währung umrechnen
Versand: EUR 28,64
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Sergio Escalera
ISBN 10: 3030256162 ISBN 13: 9783030256166
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting.Inpainting and Denoising Challenges comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration.This volume starts with a wide review on image denoising, retracing and comparing various methods from the pioneer signal processing methods, to machine learning approaches with sparse and low-rank models, and recent deep learning architectures with autoencoders and variants. The following chapterspresent results from the Challenge, including three competition tasks at WCCI and ECML 2018. The top best approaches submitted by participants are described, showing interesting contributions and innovating methods. The last two chapters propose novel contributions and highlight new applications that benefit from image/video inpainting.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 152 pp. Englisch. Artikel-Nr. 9783030256166

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Sergio Escalera
ISBN 10: 3030256162 ISBN 13: 9783030256166
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting.Inpainting and Denoising Challenges comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration.This volume starts with a wide review on image denoising, retracing and comparing various methods from the pioneer signal processing methods, to machine learning approaches with sparse and low-rank models, and recent deep learning architectures with autoencoders and variants. The following chapterspresent results from the Challenge, including three competition tasks at WCCI and ECML 2018. The top best approaches submitted by participants are described, showing interesting contributions and innovating methods. The last two chapters propose novel contributions and highlight new applications that benefit from image/video inpainting. Artikel-Nr. 9783030256166

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: EUR 61,21
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb