Verwandte Artikel zu Unsupervised Feature Extraction Applied to Bioinformatics:...

Unsupervised Feature Extraction Applied to Bioinformatics: A PCA Based and TD Based Approach (Unsupervised and Semi-Supervised Learning) - Hardcover

 
9783030224554: Unsupervised Feature Extraction Applied to Bioinformatics: A PCA Based and TD Based Approach (Unsupervised and Semi-Supervised Learning)

Inhaltsangabe

This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. 


  • Allows readers to analyze data sets with small samples and many features;
  • Provides a fast algorithm, based upon linear algebra, to analyze big data;
  • Includes several applications to multi-view data analyses, with a focus on bioinformatics.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Prof. Taguchi is currently a Professor at Department of Physics, Chuo University. Prof. Taguchi received a master degree in Statistical Physics from Tokyo Institute of Technology, Japan in 1986, and PhD degree in Non-linear Physics from Tokyo Institute of Technology, Tokyo, Japan in 1988. He worked at Tokyo Institute of Technology and Chuo University. He is with Chuo University (Tokyo, Japan) since 1997. He currently holds the Professor position at this university. His main research interests are in the area of Bioinformatics, especially, multi-omics data analysis using linear algebra. Dr. Taguchi has published a book on bioinformatics, more than 100 journal papers, book chapters and papers in conference proceedings. 

 

Von der hinteren Coverseite

This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. 


  • Allows readers to analyzedata sets with small samples and many features;
  • Provides a fast algorithm, based upon linear algebra, to analyze big data;
  • Includes several applications to multi-view data analyses, with a focus on bioinformatics.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2019
  • ISBN 10 3030224554
  • ISBN 13 9783030224554
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten340
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Unread, with some shelfwear. Immediately...
Diesen Artikel anzeigen

EUR 3,00 für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

EUR 11,90 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783030224585: Unsupervised Feature Extraction Applied to Bioinformatics: A PCA Based and TD Based Approach (Unsupervised and Semi-Supervised Learning)

Vorgestellte Ausgabe

ISBN 10:  3030224589 ISBN 13:  9783030224585
Verlag: Springer, 2020
Softcover

Suchergebnisse für Unsupervised Feature Extraction Applied to Bioinformatics:...

Beispielbild für diese ISBN

Taguchi, Y-h.
Verlag: Springer, 2019
ISBN 10: 3030224554 ISBN 13: 9783030224554
Gebraucht Hardcover Erstausgabe

Anbieter: SpringBooks, Berlin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Very Good. 1. Auflage. Unread, with some shelfwear. Immediately dispatched from Germany. Artikel-Nr. CEE-2402C-BIKINI-10-1000

Verkäufer kontaktieren

Gebraucht kaufen

EUR 62,58
Währung umrechnen
Versand: EUR 3,00
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Taguchi, Y-h. (Author)
Verlag: Springer, 2019
ISBN 10: 3030224554 ISBN 13: 9783030224554
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 321 pages. 9.25x6.25x0.75 inches. In Stock. Artikel-Nr. zk3030224554

Verkäufer kontaktieren

Neu kaufen

EUR 238,03
Währung umrechnen
Versand: EUR 11,90
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb