Verwandte Artikel zu An Introduction to Kolmogorov Complexity and Its Application...

An Introduction to Kolmogorov Complexity and Its Applications (Texts in Computer Science) - Hardcover

 
9783030112974: An Introduction to Kolmogorov Complexity and Its Applications (Texts in Computer Science)

Inhaltsangabe

<P>THIS MUST-READ TEXTBOOK PRESENTS AN ESSENTIAL INTRODUCTION TO KOLMOGOROV COMPLEXITY (KC), A CENTRAL THEORY AND POWERFUL TOOL IN INFORMATION SCIENCE THAT DEALS WITH THE QUANTITY OF INFORMATION IN INDIVIDUAL OBJECTS. THE TEXT COVERS BOTH THE FUNDAMENTAL CONCEPTS AND THE MOST IMPORTANT PRACTICAL APPLICATIONS, SUPPORTED BY A WEALTH OF DIDACTIC FEATURES.</P><P>THIS THOROUGHLY REVISED AND ENHANCED FOURTH EDITION INCLUDES NEW AND UPDATED MATERIAL ON, AMONGST OTHER TOPICS, THE MILLER-YU THEOREM, THE GÁCS-KUCERA THEOREM, THE DAY-GÁCS THEOREM, INCREASING RANDOMNESS, SHORT LISTS COMPUTABLE FROM AN INPUT STRING CONTAINING THE INCOMPUTABLE KOLMOGOROV COMPLEXITY OF THE INPUT, THE LOVÁSZ LOCAL LEMMA, SORTING, THE ALGORITHMIC FULL SLEPIAN-WOLF THEOREM FOR INDIVIDUAL STRINGS, MULTISET NORMALIZED INFORMATION DISTANCE AND NORMALIZED WEB DISTANCE, AND CONDITIONAL UNIVERSAL DISTRIBUTION.<BR></P><P></P>TOPICS AND FEATURES: DESCRIBES THE MATHEMATICAL THEORY OF KC, INCLUDING THE THEORIES OF ALGORITHMIC COMPLEXITY AND ALGORITHMIC PROBABILITY; PRESENTS A GENERAL THEORY OF INDUCTIVE REASONING AND ITS APPLICATIONS, AND REVIEWS THE UTILITY OF THE INCOMPRESSIBILITY METHOD; COVERS THE PRACTICAL APPLICATION OF KC IN GREAT DETAIL, INCLUDING THE NORMALIZED INFORMATION DISTANCE (THE SIMILARITY METRIC) AND INFORMATION DIAMETER OF MULTISETS IN PHYLOGENY, LANGUAGE TREES, MUSIC, HETEROGENEOUS FILES, AND CLUSTERING; DISCUSSES THE MANY APPLICATIONS OF RESOURCE-BOUNDED KC, AND EXAMINES DIFFERENT PHYSICAL THEORIES FROM A KC POINT OF VIEW; INCLUDES NUMEROUS EXAMPLES THAT ELABORATE THE THEORY, AND A RANGE OF EXERCISES OF VARYING DIFFICULTY (WITH SOLUTIONS); OFFERS EXPLANATORY ASIDES ON TECHNICAL ISSUES, AND EXTENSIVE HISTORICAL SECTIONS; SUGGESTS STRUCTURES FOR SEVERAL ONE-SEMESTER COURSES IN THE PREFACE.<P></P><P></P><P></P>AS THE DEFINITIVE TEXTBOOK ON KOLMOGOROV COMPLEXITY, THIS COMPREHENSIVE AND SELF-CONTAINED WORK I

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This must-read textbook presents an essential introduction to Kolmogorov complexity (KC), a central theory and powerful tool in information science that deals with the quantity of information in individual objects. The text covers both the fundamental concepts and the most important practical applications, supported by a wealth of didactic features.

This thoroughly revised and enhanced fourth edition includes new and updated material on, amongst other topics, the Miller-Yu theorem, the Gács-Kučera theorem, the Day-Gács theorem, increasing randomness, short lists computable from an input string containing the incomputable Kolmogorov complexity of the input, the Lovász local lemma, sorting, the algorithmic full Slepian-Wolf theorem for individual strings, multiset normalized information distance and normalized web distance, and conditional universal distribution.

Topics and features: describes the mathematical theory of KC, including the theories of algorithmic complexity and algorithmic probability; presents a general theory of inductive reasoning and its applications, and reviews the utility of the incompressibility method; covers the practical application of KC in great detail, including the normalized information distance (the similarity metric) and information diameter of multisets in phylogeny, language trees, music, heterogeneous files, and clustering; discusses the many applications of resource-bounded KC, and examines different physical theories from a KC point of view; includes numerous examples that elaborate the theory, and a range of exercises of varying difficulty (with solutions); offers explanatory asides on technical issues, and extensive historical sections; suggests structures for several one-semester courses in the preface.

As the definitive textbook on Kolmogorov complexity, this comprehensive and self-contained work is an invaluable resource for advanced undergraduate students, graduate students, and researchers in all fields of science.

Biografía del autor

Dr. Paul M.B. Vitányi is a CWI Fellow at the Netherlands National Research Institute for Mathematics and Computer Science (CWI), and a Professor of Computer Science at the University of Amsterdam. Dr. Ming Li is Canada Research Chair in Bioinformatics and University Professor at the University of Waterloo, ON, Canada.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer-Verlag GmbH
  • Erscheinungsdatum2019
  • ISBN 10 3030112977
  • ISBN 13 9783030112974
  • EinbandTapa dura
  • SpracheEnglisch
  • Auflage4
  • Anzahl der Seiten860

EUR 13,06 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für An Introduction to Kolmogorov Complexity and Its Application...

Beispielbild für diese ISBN

Ming Li
ISBN 10: 3030112977 ISBN 13: 9783030112974
Neu Hardcover

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. S0-9783030112974

Verkäufer kontaktieren

Neu kaufen

EUR 105,47
Währung umrechnen
Versand: EUR 13,06
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 15 verfügbar

In den Warenkorb

Foto des Verkäufers

Paul Vitányi
ISBN 10: 3030112977 ISBN 13: 9783030112974
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This must-read textbook presents an essential introduction to Kolmogorov complexity (KC), a central theory and powerful tool in information science that deals with the quantity of information in individual objects. The text covers both the fundamental concepts and the most important practical applications, supported by a wealth of didactic features.This thoroughly revised and enhanced fourth edition includes new and updated material on, amongst other topics, the Miller-Yu theorem, the Gács-Kucera theorem, the Day-Gács theorem, increasing randomness, short lists computable from an input string containing the incomputable Kolmogorov complexity of the input, the Lovász local lemma, sorting, the algorithmic full Slepian-Wolf theorem for individual strings, multiset normalized information distance and normalized web distance, and conditional universal distribution.Topics and features: describes the mathematical theory of KC, including the theories of algorithmic complexity and algorithmic probability; presents a general theory of inductive reasoning and its applications, and reviews the utility of the incompressibility method; covers the practical application of KC in great detail, including the normalized information distance (the similarity metric) and information diameter of multisets in phylogeny, language trees, music, heterogeneous files, and clustering; discusses the many applications of resource-bounded KC, and examines different physical theories from a KC point of view; includes numerous examples that elaborate the theory, and a range of exercises of varying difficulty (with solutions); offers explanatory asides on technical issues, and extensive historical sections; suggests structures for several one-semester courses in the preface.As the definitive textbook on Kolmogorov complexity, this comprehensive and self-contained work is an invaluable resource for advanced undergraduate students, graduate students, and researchers in all fields of science. Artikel-Nr. 9783030112974

Verkäufer kontaktieren

Neu kaufen

EUR 96,29
Währung umrechnen
Versand: EUR 37,87
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb