Clustering Methods for Big Data Analytics: Techniques, Toolboxes and Applications (Unsupervised and Semi-Supervised Learning) - Softcover

 
9783030074197: Clustering Methods for Big Data Analytics: Techniques, Toolboxes and Applications (Unsupervised and Semi-Supervised Learning)

Inhaltsangabe

This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.


Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Olfa Nasraoui is the endowed Chair of e-commerce and the founding director of the Knowledge Discovery & Web Mining Lab at the University of Louisville, where she is also Professor in Computer Engineering & Computer Science. She received her Ph.D in Computer Engineering and Computer Science from the University of Missouri-Columbia in 1999. Her research interests are machine learning algorithms and systems with an emphasis on clustering algorithms, web mining, and recommender systems. She is the recipient of a National Science Foundation CAREER Award and a Best Paper Award for theoretical contributions In computational intelligence at the ANNIE conference.

Chiheb Eddine Ben N’cir received his Ph.D in Computer Science and Management from Higher Institute of Management, University of Tunis, in 2014. Currently, he is an Assistant Professor at the Higher School of Digital Economy (University of Manouba) since 2015 and member of LARODEC laboratory (University of Tunis). He is also a Big Data and Business Intelligence instructor at IBM North Africa and Middle East. His research interests concern unsupervised learning methods and data mining tools with a special emphasis on Big Data clustering, disjoint and non-disjoint partitioning, kernel methods, as well as many other related fields.

Von der hinteren Coverseite

This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation. 

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9783319978635: Clustering Methods for Big Data Analytics: Techniques, Toolboxes and Applications (Unsupervised and Semi-Supervised Learning)

Vorgestellte Ausgabe

ISBN 10:  3319978632 ISBN 13:  9783319978635
Verlag: Springer, 2018
Hardcover