Independent Component Analysis (ICA) is a fast developing area of intense research interest. Following on from Self-Organising Neural Networks: Independent Component Analysis and Blind Signal Separation, this book reviews the significant developments of the past year.
It covers topics such as the use of hidden Markov methods, the independence assumption, and topographic ICA, and includes tutorial chapters on Bayesian and variational approaches. It also provides the latest approaches to ICA problems, including an investigation into certain "hard problems" for the very first time.
Comprising contributions from the most respected and innovative researchers in the field, this volume will be of interest to students and researchers in computer science and electrical engineering; research and development personnel in disciplines such as statistical modelling and data analysis; bio-informatic workers; and physicists and chemists requiring novel data analysis methods.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Independent Component Analysis (ICA) is a fast developing area of intense research interest. Following on from Self-Organising Neural Networks: Independent Component Analysis and Blind Signal Separation, this book reviews the significant developments of the past year.
It covers topics such as the use of hidden Markov methods, the independence assumption, and topographic ICA, and includes tutorial chapters on Bayesian and variational approaches. It also provides the latest approaches to ICA problems, including an investigation into certain "hard problems" for the very first time.
Comprising contributions from the most respected and innovative researchers in the field, this volume will be of interest to students and researchers in computer science and electrical engineering; research and development personnel in disciplines such as statistical modelling and data analysis; bio-informatic workers; and physicists and chemists requiring novel data analysis methods.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: AwesomeBooks, Wallingford, Vereinigtes Königreich
Paperback. Zustand: Very Good. Advances in Independent Component Analysis (Perspectives in Neural Computing) This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. . Artikel-Nr. 7719-9781852332631
Anzahl: 1 verfügbar
Anbieter: Bahamut Media, Reading, Vereinigtes Königreich
Paperback. Zustand: Very Good. Shipped within 24 hours from our UK warehouse. Clean, undamaged book with no damage to pages and minimal wear to the cover. Spine still tight, in very good condition. Remember if you are not happy, you are covered by our 100% money back guarantee. Artikel-Nr. 6545-9781852332631
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. A state-of-the-art overview with contributions from the most respected and innovative researchers in the fieldContains significantly more advanced, novel and up-to-date theory than any other volume availableIndependent Component Analysis (ICA) is a . Artikel-Nr. 4289449
Anzahl: 1 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Advances in Independent Component Analysis | Mark Girolami | Taschenbuch | xx | Englisch | 2000 | Springer London | EAN 9781852332631 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 102489856
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Independent Component Analysis (ICA) is a fast developing area of intense research interest. Following on from Self-Organising Neural Networks: Independent Component Analysis and Blind Signal Separation, this book reviews the significant developments of the past year.It covers topics such as the use of hidden Markov methods, the independence assumption, and topographic ICA, and includes tutorial chapters on Bayesian and variational approaches. It also provides the latest approaches to ICA problems, including an investigation into certain 'hard problems' for the very first time.Comprising contributions from the most respected and innovative researchers in the field, this volume will be of interest to students and researchers in computer science and electrical engineering; research and development personnel in disciplines such as statistical modelling and data analysis; bio-informatic workers; and physicists and chemists requiring novel data analysis methods. Artikel-Nr. 9781852332631
Anzahl: 1 verfügbar