Statistical analysis of data sets usually involves construction of a statistical model of the distribution of data within the available sample – and by extension the distribution of all data of the same category in the world. Statistical models are either parametric or non-parametric – this distinction is based on whether or not the model can be described in terms of a finite-dimensional parameter – and the models must be tested to ascertain whether or not they conform to the data, or are accurate.
This book addresses the testing of hypotheses in non-parametric models in the general case for complete data samples. Classical non-parametric tests (goodness-of-fit, homogeneity, randomness, independence) of complete data are considered, and explained. Tests featured include the chi-squared and modified chi-squared tests, rank and homogeneity tests, and most of the test results are proved, with real applications illustrated using examples. The incorrect use of many tests, and their application using commonly deployed statistical software is highlighted and discussed.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Vilijandas Bagdonavicius is Professor of Mathematics at the University of Vilnius in Lithuania. His main research areas are statistics, reliability and survival analysis.
Julius Kruopis is Associate Professor of Mathematics at the University of Vilnius in Lithuania. His main research areas are statistics and quality control.
Mikhail S. Nikulin is a member of the Institute of Mathematics in Bordeaux, France.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,78 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. FW-9781848212695
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781848212695_new
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. This book concerns testing hypotheses in non-parametric models. Classical non-parametric tests (goodness-of-fit, homogeneity, randomness, independence) of complete data are considered. Most of the test results are proved and real applications are illustrate. Artikel-Nr. 556580910
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 320 pages. 9.25x6.50x1.00 inches. In Stock. Artikel-Nr. __1848212690
Anzahl: 1 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. This book concerns testing hypotheses in non-parametric models. Classical non-parametric tests (goodness-of-fit, homogeneity, randomness, independence) of complete data are considered. Most of the test results are proved and real applications are illustrated using examples. Theories and exercises are provided. Num Pages: 326 pages. BIC Classification: PBK. Category: (P) Professional & Vocational. Dimension: 234 x 163 x 25. Weight in Grams: 628. . 2011. 1st Edition. Hardcover. . . . . Books ship from the US and Ireland. Artikel-Nr. V9781848212695
Anzahl: 15 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - This book concerns testing hypotheses in non-parametric models.Classical non-parametric tests (goodness-of-fit, homogeneity,randomness, independence) of complete data are considered. Most ofthe test results are proved and real applications are illustratedusing examples. Theories and exercises are provided. The incorrectuse of many tests applying most statistical software is highlightedand discussed. Artikel-Nr. 9781848212695
Anzahl: 1 verfügbar