Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems.
John Vince (author of numerous books including ‘Geometry for Computer Graphics’ and ‘Vector Analysis for Computer Graphics’) has tackled this complex subject in his usual inimitable style, and provided an accessible and very readable introduction.
As well as putting geometric algebra into its historical context, John tackles complex numbers and quaternions; the nature of wedge product and geometric product; reflections and rotations (showing how geometric algebra can offer a powerful way of describing orientations of objects and virtual cameras); and how to implement lines, planes, volumes and intersections. Introductory chapters also look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Since its invention, geometric algebra has been applied to various branches of physics such as cosmology and electrodynamics, and is now being embraced by the computer graphics community where it is providing new ways of solving geometric problems. It took over two thousand years to discover this algebra, which uses a simple and consistent notation to describe vectors and their products.
John Vince (best-selling author of a number of books including Geometry for Computer Graphics and Vector Analysis for Computer Graphics ) tackles this new subject in his usual inimitable style, and provides an accessible and very readable introduction.
The first five chapters review the algebras of real numbers, complex numbers, vectors, and quaternions and their associated axioms, together with the geometric conventions employed in analytical geometry. As well as putting geometric algebra into its historical context, John Vince provides chapters on Grassmann s outer product and Clifford s geometric product, followed by the application of geometric algebra to reflections, rotations, lines, planes and their intersection. The conformal model is also covered, where a 5D Minkowski space provides an unusual platform for unifying the transforms associated with 3D Euclidean space.
Filled with lots of clear examples and useful illustrations, this compact book provides an excellent introduction to geometric algebra for computer graphics.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,76 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Better World Books Ltd, Dunfermline, Vereinigtes Königreich
Zustand: Very Good. Ships from the UK. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects. Artikel-Nr. 49830739-20
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems.John Vince (author of numerous books including ¿Geometry for Computer Graphics¿ and ¿Vector Analysis for Computer Graphics¿) has tackled this complex subject in his usual inimitable style, and provided an accessible and very readable introduction.As well as putting geometric algebra into its historical context, John tackles complex numbers and quaternions; the nature of wedge product and geometric product; reflections and rotations (showing how geometric algebra can offer a powerful way of describing orientations of objects and virtual cameras); and how to implement lines, planes, volumes and intersections. Introductory chapters also look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 272 pp. Englisch. Artikel-Nr. 9781846289965
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Geometric algebra (a Clifford Algebra) has been applied to different branches of physics for a long time but is now being adopted by the computer graphics community and is providing exciting new ways of solving 3D geometric problems.John Vince (author of numerous books including 'Geometry for Computer Graphics' and 'Vector Analysis for Computer Graphics') has tackled this complex subject in his usual inimitable style, and provided an accessible and very readable introduction.As well as putting geometric algebra into its historical context, John tackles complex numbers and quaternions; the nature of wedge product and geometric product; reflections and rotations (showing how geometric algebra can offer a powerful way of describing orientations of objects and virtual cameras); and how to implement lines, planes, volumes and intersections. Introductory chapters also look at algebraic axioms, vector algebra and geometric conventions and the book closes with a chapter on how the algebra is applied to computer graphics. Artikel-Nr. 9781846289965
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 250 pages. 9.50x7.25x0.75 inches. In Stock. Artikel-Nr. zk1846289963
Anzahl: 1 verfügbar