Verwandte Artikel zu Applied Deep Learning with Keras

Applied Deep Learning with Keras - Softcover

 
9781838555078: Applied Deep Learning with Keras

Reseña del editor

Take your neural networks to a whole new level with the simplicity and modularity of Keras, the most commonly used high-level neural networks API.

Key Features

  • Solve complex machine learning problems with precision
  • Evaluate, tweak, and improve your deep learning models and solutions
  • Use different types of neural networks to solve real-world problems

Book Description

Though designing neural networks is a sought-after skill, it is not easy to master. With Keras, you can apply complex machine learning algorithms with minimum code.

Applied Deep Learning with Keras starts by taking you through the basics of machine learning and Python all the way to gaining an in-depth understanding of applying Keras to develop efficient deep learning solutions. To help you grasp the difference between machine and deep learning, the book guides you on how to build a logistic regression model, first with scikit-learn and then with Keras. You will delve into Keras and its many models by creating prediction models for various real-world scenarios, such as disease prediction and customer churning. You'll gain knowledge on how to evaluate, optimize, and improve your models to achieve maximum information. Next, you'll learn to evaluate your model by cross-validating it using Keras Wrapper and scikit-learn. Following this, you'll proceed to understand how to apply L1, L2, and dropout regularization techniques to improve the accuracy of your model. To help maintain accuracy, you'll get to grips with applying techniques including null accuracy, precision, and AUC-ROC score techniques for fine tuning your model.

By the end of this book, you will have the skills you need to use Keras when building high-level deep neural networks.

What you will learn

  • Understand the difference between single-layer and multi-layer neural network models
  • Use Keras to build simple logistic regression models, deep neural networks, recurrent neural networks, and convolutional neural networks
  • Apply L1, L2, and dropout regularization to improve the accuracy of your model
  • Implement cross-validate using Keras wrappers with scikit-learn
  • Understand the limitations of model accuracy

Who this book is for

If you have basic knowledge of data science and machine learning and want to develop your skills and learn about artificial neural networks and deep learning, you will find this book useful. Prior experience of Python programming and experience with statistics and logistic regression will help you get the most out of this book. Although not necessary, some familiarity with the scikit-learn library will be an added bonus.

Table of Contents

  1. Introduction to Machine Learning with Keras
  2. Machine Learning versus Deep Learning
  3. Deep Learning with Keras
  4. Evaluate your Model with Cross Validation with Keras Wrappers
  5. Improving Model Accuracy
  6. Model Evaluation
  7. Computer Vision with Convolutional Neural Networks
  8. Transfer Learning and Pre-Trained Models
  9. Sequential Modeling with Recurrent Neural Network

Biografía del autor

Ritesh Bhagwat has a master's degree in applied mathematics with a specialization in computer science. He has over 14 years of experience in data-driven technologies and has led and been a part of complex projects ranging from data warehousing and business intelligence to machine learning and artificial intelligence. He has worked with top-tier global consulting firms as well as large multinational financial institutions. Currently, he works as a data scientist. Besides work, he enjoys playing and watching cricket and loves to travel. He is also deeply interested in Bayesian statistics. Mahla Abdolahnejad is a Ph.D. candidate in systems and computer engineering with Carleton University, Canada. She also holds a bachelor's degree and a master's degree in biomedical engineering, which first exposed her to the field of artificial intelligence and artificial neural networks, in particular. Her Ph.D. research is focused on deep unsupervised learning for computer vision applications. She is particularly interested in exploring the differences between a human's way of learning from the visual world and a machine's way of learning from the visual world, and how to push machine learning algorithms toward learning and thinking like humans. Matthew Moocarme is a director and senior data scientist in Viacom's Advertising Science team. As a data scientist at Viacom, he designs data-driven solutions to help Viacom gain insights, streamline workflows, and solve complex problems using data science and machine learning. Matthew lives in New York City and outside of work enjoys combining deep learning with music theory. He is a classically-trained physicist, holding a Ph.D. in Physics from The Graduate Center of CUNY and is an active Artificial Intelligence developer, researcher, practitioner, and educator.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagPackt Publishing
  • Erscheinungsdatum2019
  • ISBN 10 1838555072
  • ISBN 13 9781838555078
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten412

EUR 14,07 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für Applied Deep Learning with Keras

Beispielbild für diese ISBN

Bhagwat, Ritesh; Abdolahnejad, Mahla; Moocarme, Matthew
Verlag: Packt Publishing, 2019
ISBN 10: 1838555072 ISBN 13: 9781838555078
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781838555078_new

Verkäufer kontaktieren

Neu kaufen

EUR 40,10
Währung umrechnen
Versand: EUR 14,07
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Bhagwat, Ritesh|Abdolahnejad, Mahla|Moocarme, Matthew
Verlag: Packt Publishing, 2019
ISBN 10: 1838555072 ISBN 13: 9781838555078
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Applied Deep Learning with Keras takes you from a basic knowledge of machine learning and Python to an expert understanding of applying Keras to develop efficient deep learning solutions. This book teaches you new techniques to handle neural networks, and i. Artikel-Nr. 448360316

Verkäufer kontaktieren

Neu kaufen

EUR 44,74
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb