Verwandte Artikel zu Machine Learning Security Principles: Keep data, networks,...

Machine Learning Security Principles: Keep data, networks, users, and applications safe from prying eyes - Softcover

 
9781804618851: Machine Learning Security Principles: Keep data, networks, users, and applications safe from prying eyes

Inhaltsangabe

Thwart hackers by preventing, detecting, and misdirecting access before they can plant malware, obtain credentials, engage in fraud, modify data, poison models, corrupt users, eavesdrop, and otherwise ruin your day


Key Features:

  • Discover how hackers rely on misdirection and deep fakes to fool even the best security systems
  • Retain the usefulness of your data by detecting unwanted and invalid modifications
  • Develop application code to meet the security requirements related to machine learning


Book Description:

Businesses are leveraging the power of AI to make undertakings that used to be complicated and pricy much easier, faster, and cheaper. The first part of this book will explore these processes in more depth, which will help you in understanding the role security plays in machine learning.

As you progress to the second part, you'll learn more about the environments where ML is commonly used and dive into the security threats that plague them using code, graphics, and real-world references.

The next part of the book will guide you through the process of detecting hacker behaviors in the modern computing environment, where fraud takes many forms in ML, from gaining sales through fake reviews to destroying an adversary's reputation. Once you've understood hacker goals and detection techniques, you'll learn about the ramifications of deep fakes, followed by mitigation strategies.

This book also takes you through best practices for embracing ethical data sourcing, which reduces the security risk associated with data. You'll see how the simple act of removing personally identifiable information (PII) from a dataset lowers the risk of social engineering attacks.

By the end of this machine learning book, you'll have an increased awareness of the various attacks and the techniques to secure your ML systems effectively.


What You Will Learn:

  • Explore methods to detect and prevent illegal access to your system
  • Implement detection techniques when access does occur
  • Employ machine learning techniques to determine motivations
  • Mitigate hacker access once security is breached
  • Perform statistical measurement and behavior analysis
  • Repair damage to your data and applications
  • Use ethical data collection methods to reduce security risks


Who this book is for:

Whether you're a data scientist, researcher, or manager working with machine learning techniques in any aspect, this security book is a must-have . While most resources available on this topic are written in a language more suitable for experts, this guide presents security in an easy-to-understand way, employing a host of diagrams to explain concepts to visual learners. While familiarity with machine learning concepts is assumed, knowledge of Python and programming in general will be useful.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

John Paul Mueller is a seasoned author and technical editor. He has writing in his blood, having produced 121 books and more than 600 articles to date. The topics range from networking to artificial intelligence and from database management to heads-down programming. Some of his current books include discussions of data science, machine learning, and algorithms. He also writes about computer languages such as C++, C#, and Python. His technical editing skills have helped more than 70 authors refine the content of their manuscripts. John has provided technical editing services to a variety of magazines, performed various kinds of consulting, and he writes certification exams.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagPackt Publishing
  • Erscheinungsdatum2022
  • ISBN 10 1804618853
  • ISBN 13 9781804618851
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten450
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Gut
Gut/Very good: Buch bzw. Schutzumschlag...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

EUR 5,82 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Machine Learning Security Principles: Keep data, networks,...

Beispielbild für diese ISBN

Mueller, John Paul
Verlag: Packt Publishing, 2022
ISBN 10: 1804618853 ISBN 13: 9781804618851
Gebraucht Softcover

Anbieter: medimops, Berlin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Artikel-Nr. M01804618853-V

Verkäufer kontaktieren

Gebraucht kaufen

EUR 21,14
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

John Paul Mueller
Verlag: Packt Publishing, 2022
ISBN 10: 1804618853 ISBN 13: 9781804618851
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781804618851_new

Verkäufer kontaktieren

Neu kaufen

EUR 47,39
Währung umrechnen
Versand: EUR 5,82
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb