Verwandte Artikel zu Modern Time Series Forecasting with Python: Explore...

Modern Time Series Forecasting with Python: Explore industry-ready time series forecasting using modern machine learning and deep learning - Softcover

 
9781803246802: Modern Time Series Forecasting with Python: Explore industry-ready time series forecasting using modern machine learning and deep learning

Inhaltsangabe

Build real-world time series forecasting systems which scale to millions of time series by applying modern machine learning and deep learning concepts

Key Features

  • Explore industry-tested machine learning techniques used to forecast millions of time series
  • Get started with the revolutionary paradigm of global forecasting models
  • Get to grips with new concepts by applying them to real-world datasets of energy forecasting

Book Description

We live in a serendipitous era where the explosion in the quantum of data collected and a renewed interest in data-driven techniques such as machine learning (ML), has changed the landscape of analytics, and with it, time series forecasting. This book, filled with industry-tested tips and tricks, takes you beyond commonly used classical statistical methods such as ARIMA and introduces to you the latest techniques from the world of ML.

This is a comprehensive guide to analyzing, visualizing, and creating state-of-the-art forecasting systems, complete with common topics such as ML and deep learning (DL) as well as rarely touched-upon topics such as global forecasting models, cross-validation strategies, and forecast metrics. You’ll begin by exploring the basics of data handling, data visualization, and classical statistical methods before moving on to ML and DL models for time series forecasting. This book takes you on a hands-on journey in which you’ll develop state-of-the-art ML (linear regression to gradient-boosted trees) and DL (feed-forward neural networks, LSTMs, and transformers) models on a real-world dataset along with exploring practical topics such as interpretability.

By the end of this book, you’ll be able to build world-class time series forecasting systems and tackle problems in the real world.

What you will learn

  • Find out how to manipulate and visualize time series data like a pro
  • Set strong baselines with popular models such as ARIMA
  • Discover how time series forecasting can be cast as regression
  • Engineer features for machine learning models for forecasting
  • Explore the exciting world of ensembling and stacking models
  • Get to grips with the global forecasting paradigm
  • Understand and apply state-of-the-art DL models such as N-BEATS and Autoformer
  • Explore multi-step forecasting and cross-validation strategies

Who this book is for

The book is for data scientists, data analysts, machine learning engineers, and Python developers who want to build industry-ready time series models. Since the book explains most concepts from the ground up, basic proficiency in Python is all you need. Prior understanding of machine learning or forecasting will help speed up your learning. For experienced machine learning and forecasting practitioners, this book has a lot to offer in terms of advanced techniques and traversing the latest research frontiers in time series forecasting.

Table of Contents

  1. Introducing Time Series
  2. Acquiring and Processing Time Series Data
  3. Analyzing and Visualizing Time Series Data
  4. Setting a Strong Baseline Forecast
  5. Time Series Forecasting as Regression
  6. Feature Engineering for Time Series Forecasting
  7. Target Transformations for Time Series Forecasting
  8. Forecasting Time Series with Machine Learning Models
  9. Ensembling and Stacking
  10. Global Forecasting Models
  11. Introduction to Deep Learning
  12. Building Blocks of Deep Learning for Time Series
  13. Common Modeling Patterns for Time Series
  14. Attention and Transformers for Time Series
  15. Strategies for Global Deep Learning Forecasting Models
  16. (N.B. Please use the Look Inside option to see further chapters)

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Manu Joseph is a self-made data scientist with more than a decade of experience working with many Fortune 500 companies enabling digital and AI transformations, specifically in machine learning-based demand forecasting. He is considered an expert, thought leader, and strong voice in the world of time series forecasting. Currently, Manu leads applied research at Thoucentric, where he advances research by bringing cutting-edge AI technologies to the industry. He is also an active open-source contributor and developed an open-source library-PyTorch Tabular-which makes deep learning for tabular data easy and accessible. Originally from Thiruvananthapuram, India, Manu currently resides in Bengaluru, India, with his wife and son

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagPackt Publishing
  • Erscheinungsdatum2022
  • ISBN 10 1803246804
  • ISBN 13 9781803246802
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten552
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Modern Time Series Forecasting with Python: Explore...

Foto des Verkäufers

Joseph, Manu
Verlag: Packt Publishing, 2022
ISBN 10: 1803246804 ISBN 13: 9781803246802
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. KlappentextBuild real-world time series forecasting systems which scale to millions of time series by applying modern machine learning and deep learning conceptsKey FeaturesExplore industry-tested machine learning techniques used to fore. Artikel-Nr. 764893230

Verkäufer kontaktieren

Neu kaufen

EUR 60,80
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Manu Joseph
Verlag: Packt Publishing, 2022
ISBN 10: 1803246804 ISBN 13: 9781803246802
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781803246802_new

Verkäufer kontaktieren

Neu kaufen

EUR 55,76
Währung umrechnen
Versand: EUR 5,91
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb