Verwandte Artikel zu Codeless Time Series Analysis with KNIME: A practical...

Codeless Time Series Analysis with KNIME: A practical guide to implementing forecasting models for time series analysis applications - Softcover

 
9781803232065: Codeless Time Series Analysis with KNIME: A practical guide to implementing forecasting models for time series analysis applications

Inhaltsangabe

Perform time series analysis using KNIME Analytics Platform, covering both statistical methods and machine learning-based methods

Key Features

  • Gain a solid understanding of time series analysis and its applications using KNIME
  • Learn how to apply popular statistical and machine learning time series analysis techniques
  • Integrate other tools such as Spark, H2O, and Keras with KNIME within the same application

Book Description

This book will take you on a practical journey, teaching you how to implement solutions for many use cases involving time series analysis techniques.

This learning journey is organized in a crescendo of difficulty, starting from the easiest yet effective techniques applied to weather forecasting, then introducing ARIMA and its variations, moving on to machine learning for audio signal classification, training deep learning architectures to predict glucose levels and electrical energy demand, and ending with an approach to anomaly detection in IoT. There's no time series analysis book without a solution for stock price predictions and you'll find this use case at the end of the book, together with a few more demand prediction use cases that rely on the integration of KNIME Analytics Platform and other external tools.

By the end of this time series book, you'll have learned about popular time series analysis techniques and algorithms, KNIME Analytics Platform, its time series extension, and how to apply both to common use cases.

What you will learn

  • Install and configure KNIME time series integration
  • Implement common preprocessing techniques before analyzing data
  • Visualize and display time series data in the form of plots and graphs
  • Separate time series data into trends, seasonality, and residuals
  • Train and deploy FFNN and LSTM to perform predictive analysis
  • Use multivariate analysis by enabling GPU training for neural networks
  • Train and deploy an ML-based forecasting model using Spark and H2O

Who this book is for

This book is for data analysts and data scientists who want to develop forecasting applications on time series data. While no coding skills are required thanks to the codeless implementation of the examples, basic knowledge of KNIME Analytics Platform is assumed. The first part of the book targets beginners in time series analysis, and the subsequent parts of the book challenge both beginners as well as advanced users by introducing real-world time series applications.

Table of Contents

  1. Introducing Time Series Analysis
  2. Introduction to KNIME Analytics Platform
  3. Preparing Data for Time Series Analysis
  4. Time Series Visualization
  5. Time Series Components and Statistical Properties
  6. Humidity Forecasting with Classical Methods
  7. Forecasting the Temperature with ARIMA and SARIMA Models
  8. Audio Signal Classification with an FFT and a Gradient Boosted Forest
  9. Training and Deploying a Neural Network to Predict Glucose Levels
  10. Predicting Energy Demand with an LSTM Model
  11. Anomaly Detection – Predicting Failure with No Failure Examples
  12. Predicting Taxi Demand on the Spark Platform
  13. GPU Accelerated Model for Multivariate Forecasting
  14. Combining KNIME and H2O to Predict Stock Prices

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Corey Weisinger is a data scientist with KNIME in Austin, Texas. He studied mathematics at Michigan State University focusing on actuarial techniques and functional analysis. Before coming to work for KNIME, he worked as an analytics consultant for the auto industry in Detroit, Michigan. He currently focuses on signal processing and numeric prediction techniques and is the author of the Alteryx to KNIME guidebook.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagPackt Publishing
  • Erscheinungsdatum2022
  • ISBN 10 1803232064
  • ISBN 13 9781803232065
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten392
  • Kontakt zum HerstellerNicht verfügbar

EUR 5,82 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Codeless Time Series Analysis with KNIME: A practical...

Beispielbild für diese ISBN

Corey Weisinger; Maarit Widmann; Daniele Tonini
Verlag: Packt Publishing, 2022
ISBN 10: 1803232064 ISBN 13: 9781803232065
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781803232065_new

Verkäufer kontaktieren

Neu kaufen

EUR 47,39
Währung umrechnen
Versand: EUR 5,82
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb