Verwandte Artikel zu Exploratory Data Analysis with Python Cookbook: Over...

Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data - Softcover

 
9781803231105: Exploratory Data Analysis with Python Cookbook: Over 50 recipes to analyze, visualize, and extract insights from structured and unstructured data

Inhaltsangabe

Extract valuable insights from data by leveraging various analysis and visualization techniques with this comprehensive guide

Purchase of the print or Kindle book includes a free PDF eBook

Key Features

  • Gain practical experience in conducting EDA on a single variable of interest in Python
  • Learn the different techniques for analyzing and exploring tabular, time series, and textual data in Python
  • Get well versed in data visualization using leading Python libraries like Matplotlib and seaborn

Book Description

Exploratory data analysis (EDA) is a crucial step in data analysis and machine learning projects as it helps in uncovering relationships and patterns and provides insights into structured and unstructured datasets. With various techniques and libraries available for performing EDA, choosing the right approach can sometimes be challenging. This hands-on guide provides you with practical steps and ready-to-use code for conducting exploratory analysis on tabular, time series, and textual data.

The book begins by focusing on preliminary recipes such as summary statistics, data preparation, and data visualization libraries. As you advance, you’ll discover how to implement univariate, bivariate, and multivariate analyses on tabular data. Throughout the chapters, you’ll become well versed in popular Python visualization and data manipulation libraries such as seaborn and pandas.

By the end of this book, you will have mastered the various EDA techniques and implemented them efficiently on structured and unstructured data.

What you will learn

  • Perform EDA with leading Python data visualization libraries
  • Execute univariate, bivariate, and multivariate analyses on tabular data
  • Uncover patterns and relationships within time series data
  • Identify hidden patterns within textual data
  • Discover different techniques to prepare data for analysis
  • Overcome the challenge of outliers and missing values during data analysis
  • Leverage automated EDA for fast and efficient analysis

Who this book is for

If you are a data analyst interested in the practical application of exploratory data analysis in Python, then this book is for you. This book will also benefit data scientists, researchers, and statisticians who are looking for hands-on instructions on how to apply EDA techniques using Python libraries. Basic knowledge of Python programming and a basic understanding of fundamental statistical concepts is a prerequisite.

Table of Contents

  1. Generating Summary Statistics
  2. Preparing Data for EDA
  3. Visualising Data in Python
  4. Performing Univariate Analysis in Python
  5. Performing Bivariate analysis in Python
  6. Performing Multivariate analysis in Python
  7. Analysing Time Series data
  8. Analysing Text data
  9. Dealing with Outliers and Missing values
  10. Performing Automated EDA in Python

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Ayodele is a data professional with nearly a decade of experience. Throughout his career, he has gained valuable experience in various domains such as strategy, data science and more recently data management. Previously, he served as a consultant at a big 4 consulting firm, where he successfully provided data-driven solutions and insights to clients. Currently, he holds a leadership position at a financial services group where he leads a dynamic data team, driving analytics initiatives to empower the organization. Beyond his professional endeavors, he is passionate about sharing his knowledge and experience. You can find him actively engaging with the data community through insightful articles on LinkedIn and speaking at industry events.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
Ship within 24hrs. Satisfaction...
Diesen Artikel anzeigen

EUR 6,87 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

EUR 5,76 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Exploratory Data Analysis with Python Cookbook: Over...

Beispielbild für diese ISBN

Oluleye, Ayodele
Verlag: Packt Publishing, 2023
ISBN 10: 1803231106 ISBN 13: 9781803231105
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781803231105_new

Verkäufer kontaktieren

Neu kaufen

EUR 51,86
Währung umrechnen
Versand: EUR 5,76
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Oluleye, Ayodele
ISBN 10: 1803231106 ISBN 13: 9781803231105
Gebraucht Paperback

Anbieter: BooksRun, Philadelphia, PA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Very Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Artikel-Nr. 1803231106-8-1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 60,66
Währung umrechnen
Versand: EUR 6,87
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb