Build highly secure and scalable machine learning platforms to support the fast-paced adoption of machine learning solutions
With a highly scalable machine learning (ML) platform, organizations can quickly scale the delivery of ML products for faster business value realization, so there is a huge demand for skilled ML solutions architects in different industries. This hands-on ML book takes you through the design patterns, architectural considerations, and the latest technology that you need to know to become a successful ML solutions architect.
You'll start by understanding ML fundamentals and how ML can be applied to real-world business problems. Once you've explored some of the leading ML algorithms for solving different types of problems, the book will help you get to grips with data management and using ML libraries such as TensorFlow and PyTorch. You'll learn how to use open source technology such as Kubernetes/Kubeflow to build a data science environment and ML pipelines and then advance to building an enterprise ML architecture using Amazon Web Services (AWS) services. You'll then cover security and governance considerations, advanced ML engineering techniques, and how to apply bias detection, explainability, and privacy in ML model development. Finally, you'll get acquainted with AWS AI services and their applications in real-world use cases.
By the end of this book, you'll be able to design and build an ML platform to support common use cases and architecture patterns.
This book is for data scientists, data engineers, cloud architects, and machine learning enthusiasts who want to become machine learning solutions architects. Basic knowledge of the Python programming language, AWS, linear algebra, probability, and networking concepts is assumed.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
David Ping is a senior technology leader with over 25 years of experience in the technology and financial services industry. His technology focus areas include cloud architecture, enterprise ML platform design, large-scale model training, intelligent document processing, intelligent media processing, intelligent search, and data platforms. He currently leads an AI/ML solutions architecture team at AWS, where he helps global companies design and build AI/ML solutions in the AWS cloud. Before joining AWS, David held various senior technology leadership roles at Credit Suisse and JPMorgan. He started his career as a software engineer at Intel. David has an engineering degree from Cornell University.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Dream Books Co., Denver, CO, USA
Zustand: acceptable. This copy has clearly been enjoyedâ"expect noticeable shelf wear and some minor creases to the cover. Binding is strong, and all pages are legible. May contain previous library markings or stamps. Artikel-Nr. DBV.1801072167.A
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. As machine learning becomes increasingly important across many industries, organizations need to keep up by building secure and scalable ML platforms. This handbook takes you through the whole process, from data science to system architecture and ML governa. Artikel-Nr. 565389631
Anzahl: Mehr als 20 verfügbar