Verwandte Artikel zu Hands-On Deep Learning Architectures with Python

Hands-On Deep Learning Architectures with Python - Softcover

 
9781788998086: Hands-On Deep Learning Architectures with Python

Inhaltsangabe

Concepts, tools, and techniques to explore deep learning architectures and methodologies

Key Features

  • Explore advanced deep learning architectures using various datasets and frameworks
  • Implement deep architectures for neural network models such as CNN, RNN, GAN, and many more
  • Discover design patterns and different challenges for various deep learning architectures

Book Description

Deep learning architectures are composed of multilevel nonlinear operations that represent high-level abstractions; this allows you to learn useful feature representations from the data. This book will help you learn and implement deep learning architectures to resolve various deep learning research problems.

Hands-On Deep Learning Architectures with Python explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations and ideas to help you build efficient artificial intelligence systems (AI), this book will help you learn how neural networks play a major role in building deep architectures. You will understand various deep learning architectures (such as AlexNet, VGG Net, GoogleNet) with easy-to-follow code and diagrams. In addition to this, the book will also guide you in building and training various deep architectures such as the Boltzmann mechanism, autoencoders, convolutional neural networks (CNNs), recurrent neural networks (RNNs), natural language processing (NLP), GAN, and more―all with practical implementations.

By the end of this book, you will be able to construct deep models using popular frameworks and datasets with the required design patterns for each architecture. You will be ready to explore the potential of deep architectures in today's world.

What you will learn

  • Implement CNNs, RNNs, and other commonly used architectures with Python
  • Explore architectures such as VGGNet, AlexNet, and GoogLeNet
  • Build deep learning architectures for AI applications such as face and image recognition, fraud detection, and many more
  • Understand the architectures and applications of Boltzmann machines and autoencoders with concrete examples
  • Master artificial intelligence and neural network concepts and apply them to your architecture
  • Understand deep learning architectures for mobile and embedded systems

Who this book is for

If you're a data scientist, machine learning developer/engineer, or deep learning practitioner, or are curious about AI and want to upgrade your knowledge of various deep learning architectures, this book will appeal to you. You are expected to have some knowledge of statistics and machine learning algorithms to get the best out of this book

Table of Contents

  1. Getting Started with Deep Learning
  2. Deep Feedforward Networks
  3. Restricted Boltzmann Machines and Autoencoders
  4. CNN Architecture
  5. Mobile Neural Networks and CNNs
  6. Recurrent Neural Networks
  7. Generative Adversarial Networks
  8. New Trends of Deep Learning

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorinnen und Autoren

Yuxi (Hayden) Liu is an experienced data scientist who's focused on developing machine learning and deep learning models and systems. He has worked in a variety of data-driven domains and has applied his expertise in reinforcement learning to computational. He is an education enthusiast and the author of a series of ML books. His first book, Python Machine Learning By Example, was a #1 bestseller on Amazon India in 2017 and 2018. His other books include R Deep Learning Projects and Hands-On Deep Learning Architectures with Python published by Packt. He also published five first-authored IEEE transaction and conference papers during his master's research at the University of Toronto.

Saransh Mehta has cross-domain experience of working with texts, images, and audio using deep learning. He has been building artificial, intelligence-based solutions, including a generative chatbot, an attendee-matching recommendation system, and audio keyword recognition systems for multiple start-ups. He is very familiar with the Python language, and has extensive knowledge of deep learning libraries such as TensorFlow and Keras. He has been in the top 10% of entrants to deep learning challenges hosted by Microsoft and Kaggle.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagPackt Publishing
  • Erscheinungsdatum2019
  • ISBN 10 1788998081
  • ISBN 13 9781788998086
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten316
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Hands-On Deep Learning Architectures with Python

Foto des Verkäufers

Liu, Yuxi (Hayden)|Mehta, Saransh
Verlag: Packt Publishing, 2019
ISBN 10: 1788998081 ISBN 13: 9781788998086
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This book explains the essential learning algorithms used for deep and shallow architectures. Packed with practical implementations to help you understand the concepts and ideas required to build efficient artificial intelligence systems, this book will hel. Artikel-Nr. 448329802

Verkäufer kontaktieren

Neu kaufen

EUR 39,38
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Yuxi (Hayden) Liu; Saransh Mehta
Verlag: Packt Publishing, 2019
ISBN 10: 1788998081 ISBN 13: 9781788998086
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781788998086_new

Verkäufer kontaktieren

Neu kaufen

EUR 35,42
Währung umrechnen
Versand: EUR 5,91
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb