Verwandte Artikel zu Hands-On Ensemble Learning with R: A beginner's...

Hands-On Ensemble Learning with R: A beginner's guide to combining the power of machine learning algorithms using ensemble techniques - Softcover

 
9781788624145: Hands-On Ensemble Learning with R: A beginner's guide to combining the power of machine learning algorithms using ensemble techniques

Inhaltsangabe

Explore powerful R packages to create predictive models using ensemble methods

Key Features

  • Implement machine learning algorithms to build ensemble-efficient models
  • Explore powerful R packages to create predictive models using ensemble methods
  • Learn to build ensemble models on large datasets using a practical approach

Book Description

Ensemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy.

Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central trilogy of ensemble techniques – bagging, random forest, and boosting – then you'll learn how they can be used to provide greater accuracy on large datasets using popular R packages. You will learn how to combine model predictions using different machine learning algorithms to build ensemble models. In addition to this, you will explore how to improve the performance of your ensemble models.

By the end of this book, you will have learned how machine learning algorithms can be combined to reduce common problems and build simple efficient ensemble models with the help of real-world examples.

What you will learn

  • Carry out an essential review of re-sampling methods, bootstrap, and jackknife
  • Explore the key ensemble methods: bagging, random forests, and boosting
  • Use multiple algorithms to make strong predictive models
  • Enjoy a comprehensive treatment of boosting methods
  • Supplement methods with statistical tests, such as ROC
  • Walk through data structures in classification, regression, survival, and time series data
  • Use the supplied R code to implement ensemble methods
  • Learn stacking method to combine heterogeneous machine learning models

Who this book is for

This book is for you if you are a data scientist or machine learning developer who wants to implement machine learning techniques by building ensemble models with the power of R. You will learn how to combine different machine learning algorithms to perform efficient data processing. Basic knowledge of machine learning techniques and programming knowledge of R would be an added advantage.

Table of Contents

  1. Introduction to Ensemble Techniques
  2. Bootstrapping
  3. Bagging
  4. Random Forests
  5. The Bare Bones Boosting Algorithms
  6. Boosting Refinements
  7. The General Ensemble Technique
  8. Ensemble Diagnostics
  9. Ensembling Regression Models
  10. Ensembling Survival Models
  11. Ensembling Time Series Models
  12. What's Next?

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Prabhanjan Narayanachar Tattar is a lead statistician and manager at the Global Data Insights & Analytics division of Ford Motor Company, Chennai. He received the IBS(IR)-GK Shukla Young Biometrician Award (2005) and Dr. U.S. Nair Award for Young Statistician (2007). He held SRF of CSIR-UGC during his PhD. He has authored books such as Statistical Application Development with R and Python, 2nd Edition, Packt; Practical Data Science Cookbook, 2nd Edition, Packt; and A Course in Statistics with R, Wiley. He has created many R packages.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 19,65 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Hands-On Ensemble Learning with R: A beginner's...

Beispielbild für diese ISBN

Prabhanjan Narayanachar Tattar
ISBN 10: 1788624149 ISBN 13: 9781788624145
Neu Softcover

Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. *Price HAS BEEN REDUCED by 10% until Monday, Aug. 18 (weekend SALE item)* 526 pp., paperback, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Artikel-Nr. ZB1316477

Verkäufer kontaktieren

Neu kaufen

EUR 32,20
Währung umrechnen
Versand: EUR 19,65
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tattar, Prabhanjan Narayanachar
Verlag: Packt Publishing, 2018
ISBN 10: 1788624149 ISBN 13: 9781788624145
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781788624145_new

Verkäufer kontaktieren

Neu kaufen

EUR 49,45
Währung umrechnen
Versand: EUR 5,77
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Tattar, Prabhanjan
Verlag: Packt Publishing, 2018
ISBN 10: 1788624149 ISBN 13: 9781788624145
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This book introduces you to the concept of ensemble learning and demonstrates how different machine learning algorithms can be combined to build efficient machine learning models. Use R to implement the popular trilogy of ensemble techniques, i.e. bagging, . Artikel-Nr. 448328646

Verkäufer kontaktieren

Neu kaufen

EUR 55,44
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb