Build intelligent end-to-end machine learning systems with Python
Key Features
Book Description
Machine learning enables systems to make predictions based on historical data. Python is one of the most popular languages used to develop machine learning applications, thanks to its extensive library support. This updated third edition of Building Machine Learning Systems with Python helps you get up to speed with the latest trends in artificial intelligence (AI).
With this guide's hands-on approach, you'll learn to build state-of-the-art machine learning models from scratch. Complete with ready-to-implement code and real-world examples, the book starts by introducing the Python ecosystem for machine learning. You'll then learn best practices for preparing data for analysis and later gain insights into implementing supervised and unsupervised machine learning techniques such as classification, regression and clustering. As you progress, you'll understand how to use Python's scikit-learn and TensorFlow libraries to build production-ready and end-to-end machine learning system models, and then fine-tune them for high performance.
By the end of this book, you'll have the skills you need to confidently train and deploy enterprise-grade machine learning models in Python.
What you will learn
Who this book is for:
This book is for data scientists, machine learning developers, and Python developers who want to learn how to build increasingly complex machine learning systems. Prior knowledge of Python programming is expected.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Luis Pedro Coelho is a computational biologist who analyzes DNA from microbial communities to characterize their behavior. He has also worked extensively in bioimage informatics - the application of machine learning techniques for the analysis of images of biological specimens. His main focus is on the processing and integration of large-scale datasets. He has a PhD from Carnegie Mellon University and has authored several scientific publications. In 2004, he began developing in Python and has contributed to several open source libraries. He is currently a faculty member at Fudan University in Shanghai.
Willi Richert has a PhD in machine learning/robotics, where he has used reinforcement learning, hidden Markov models, and Bayesian networks to let heterogeneous robots learn by imitation. Now at Microsoft, he is involved in various machine learning areas, such as deep learning, active learning, or statistical machine translation. Willi started as a child with BASIC on his Commodore 128. Later, he discovered Turbo Pascal, then Java, then C++-only to finally arrive at his true love: Python.
Matthieu Brucher is a computer scientist who specializes in high-performance computing and computational modeling and currently works for JPMorgan in their quantitative research branch. He is also the lead developer of Audio ToolKit, a library for real-time audio signal processing. He has a PhD in machine learning and signals processing from the University of Strasbourg, two Master of Science degreesone in digital electronics and signal processing and another in automation from the University of Paris XI and Supelec, as well as a Master of Music degree from Bath Spa University.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Machine learning allows models or systems to learn without being explicitly programmed. You will see how to use the best of libraries support such as scikit-learn, Tensorflow and much more to build efficient smart systems.Über den Autorrn. Artikel-Nr. 516816148
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781788623223_new
Anzahl: Mehr als 20 verfügbar