Master the craft of predictive modeling in R by developing strategy, intuition, and a solid foundation in essential concepts
Although budding data scientists, predictive modelers, or quantitative analysts with only basic exposure to R and statistics will find this book to be useful, the experienced data scientist professional wishing to attain master level status , will also find this book extremely valuable.. This book assumes familiarity with the fundamentals of R, such as the main data types, simple functions, and how to move data around. Although no prior experience with machine learning or predictive modeling is required, there are some advanced topics provided that will require more than novice exposure.
R offers a free and open source environment that is perfect for both learning and deploying predictive modeling solutions. With its constantly growing community and plethora of packages, R offers the functionality to deal with a truly vast array of problems.
The book begins with a dedicated chapter on the language of models and the predictive modeling process. You will understand the learning curve and the process of tidying data. Each subsequent chapter tackles a particular type of model, such as neural networks, and focuses on the three important questions of how the model works, how to use R to train it, and how to measure and assess its performance using real-world datasets. How do you train models that can handle really large datasets? This book will also show you just that. Finally, you will tackle the really important topic of deep learning by implementing applications on word embedding and recurrent neural networks.
By the end of this book, you will have explored and tested the most popular modeling techniques in use on real- world datasets and mastered a diverse range of techniques in predictive analytics using R.
This book takes a step-by-step approach in explaining the intermediate to advanced concepts in predictive analytics. Every concept is explained in depth, supplemented with practical examples applicable in a real-world setting.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
James D. Miller is an IBM Certified Expert, Master Consultant, and application/system architect with over 35 years of applications and system design/development experience across multiple platforms, technologies, and data formats, including big data. His experience includes IBM Planning Analytics, BI, web architecture/design, systems analysis, GUI design/testing, data modeling, and OLAP design/development. He has also worked on client/server, web, and mainframe applications. He has authored numerous books, including Implementing Splunk, Second Edition; Mastering Splunk, Hands-On Machine Learning with IBM Watson, Watson Projects, Statistics for Data Science, and Mastering Predictive Analytics with R, Second Edition.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Very Good. 2nd Revised edition. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting. Artikel-Nr. 1787121399-8-1
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Über den AutorrnrnJames D. Miller is an IBM Certified Expert, Master Consultant, and application/system architect with over 35 years of applications and system design/development experience across multiple platforms, technologies, and data . Artikel-Nr. 448326282
Anzahl: Mehr als 20 verfügbar