In today's world, we are increasingly exposed to the words "machine learning" (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it. An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authors Provide a systematic and rigorous introduction to supervised, unsupervised and reinforcement learning by establishing essential definitions and theorems. Dive into various types of neural networks, including artificial nets, convolutional nets, recurrent nets and recurrent reinforcement learning. Summarize key contents of each section in the tables as a cheat sheet. Include ample examples of financial applications. Showcase how to tackle an exemplar ML project on financial data end-to-end. Provide a GitHub repository https://github.com/deepintomlf/mlfbook.git that contains supplementary Python codes of all methods/examples. Featured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data!
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
In today's world, we are increasingly exposed to the words "machine learning" (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation. Over the past few years, ML has gradually permeated the financial sector, reshaping the landscape of quantitative finance as we know it.
An Introduction to Machine Learning in Quantitative Finance aims to demystify ML by uncovering its underlying mathematics and showing how to apply ML methods to real-world financial data. In this book the authors
Provide a systematic and rigorous introduction to supervised, unsupervised and reinforcement learning by establishing essential definitions and theorems.
Dive into various types of neural networks, including artificial nets, convolutional nets, recurrent nets and recurrent reinforcement learning.
Summarize key contents of each section in the tables as a cheat sheet.
Include ample examples of financial applications.
Showcase how to tackle an exemplar ML project on financial data end-to-end.
Supplement Python codes of all the methods/examples in a GitHub repository.
Featured with the balance of mathematical theorems and practical code examples of ML, this book will help you acquire an in-depth understanding of ML algorithms as well as hands-on experience. After reading An Introduction to Machine Learning in Quantitative Finance, ML tools will not be a black box to you anymore, and you will feel confident in successfully applying what you have learnt to empirical financial data!
The Python codes contained within An Introduction to Machine Learning in Quantitative Finance have been made publicly available on the author's GitHub: https: //github.com/deepintomlf/mlfbook.git
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,77 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9781786349644
Anzahl: 3 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9781786349644
Anzahl: 3 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9781786349644
Anzahl: 3 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. In today s world, we are increasingly exposed to the words machine learning (ML), a term which sounds like a panacea designed to cure all problems ranging from image recognition to machine language translation.KlappentextrnrnIn today s wor. Artikel-Nr. 401761154
Anzahl: 3 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781786349644_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 265. Artikel-Nr. 379560262
Anzahl: 3 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 264 pages. 8.75x5.75x0.50 inches. In Stock. Artikel-Nr. x-1786349647
Anzahl: 2 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2021. Paperback. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9781786349644
Anzahl: 3 verfügbar