Become an advanced practitioner with this progressive set of master classes on application-oriented machine learning
Key Features
Book Description
Java is one of the main languages used by practicing data scientists; much of the Hadoop ecosystem is Java-based, and it is certainly the language that most production systems in Data Science are written in. If you know Java, Mastering Machine Learning with Java is your next step on the path to becoming an advanced practitioner in Data Science.
This book aims to introduce you to an array of advanced techniques in machine learning, including classification, clustering, anomaly detection, stream learning, active learning, semi-supervised learning, probabilistic graph modeling, text mining, deep learning, and big data batch and stream machine learning. Accompanying each chapter are illustrative examples and real-world case studies that show how to apply the newly learned techniques using sound methodologies and the best Java-based tools available today.
On completing this book, you will have an understanding of the tools and techniques for building powerful machine learning models to solve data science problems in just about any domain.
What you will learn
Who this book is for
This book will appeal to anyone with a serious interest in topics in Data Science or those already working in related areas: ideally, intermediate-level data analysts and data scientists with experience in Java. Preferably, you will have experience with the fundamentals of machine learning and now have a desire to explore the area further, are up to grappling with the mathematical complexities of its algorithms, and you wish to learn the complete ins and outs of practical machine learning.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Uday Kamath is the chief data scientist at BAE Systems Applied Intelligence. He specializes in scalable machine learning and has spent 20 years in the domain of AML, fraud detection in financial crime, cyber security, and bioinformatics, to name a few. Dr. Kamath is responsible for key products in areas focusing on the behavioral, social networking and big data machine learning aspects of analytics at BAE AI. He received his PhD at George Mason University, under the able guidance of Dr. Kenneth De Jong, where his dissertation research focused on machine learning for big data and automated sequence mining.
Krishna Choppella builds tools and client solutions in his role as a solutions architect for analytics at BAE Systems Applied Intelligence. He has been programming in Java for 20 years. His interests are data science, functional programming, and distributed computing.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 13,74 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: ThriftBooks-Atlanta, AUSTELL, GA, USA
Paperback. Zustand: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 2.15. Artikel-Nr. G1785880519I3N00
Anzahl: 1 verfügbar
Anbieter: Better World Books, Mishawaka, IN, USA
Zustand: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Artikel-Nr. 39738756-6
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781785880513_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Über den AutorrnrnDr. Uday Kamath is the chief data scientist at BAE Systems Applied Intelligence. He specializes in scalable machine learning and has spent 20 years in the domain of AML, fraud detection in financial crime, cyber security, . Artikel-Nr. 464982610
Anzahl: Mehr als 20 verfügbar