This book presents and discusses innovative ideas in the design, modelling, implementation, and optimization of hardware platforms for neural networks.
The rapid growth of server, desktop, and embedded applications based on deep learning has brought about a renaissance in interest in neural networks, with applications including image and speech processing, data analytics, robotics, healthcare monitoring, and IoT solutions. Efficient implementation of neural networks to support complex deep learning-based applications is a complex challenge for embedded and mobile computing platforms with limited computational/storage resources and a tight power budget. Even for cloud-scale systems it is critical to select the right hardware configuration based on the neural network complexity and system constraints in order to increase power- and performance-efficiency.
Hardware Architectures for Deep Learning provides an overview of this new field, from principles to applications, for researchers, postgraduate students and engineers who work on learning-based services and hardware platforms.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Masoud Daneshtalab is a tenured associate professor at Mälardalen University (MDH) in Sweden, an adjunct professor at Tallinn University of Technology (TalTech) in Estonia, and sits on the board of directors of Euromicro. His research interests include interconnection networks, brain-like computing, and deep learning architectures. He has published over 300-refereed papers.
Mehdi Modarressi is an assistant professor at the Department of Electrical and Computer Engineering, University of Tehran, Iran. He is the founder and director of the Parallel and Network-based Processing research laboratory at the University of Tehran, where he leads several industrial and research projects on deep learning-based embedded system design and implementation.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 300 pages. 9.21x6.14x0.75 inches. In Stock. Artikel-Nr. x-1785617680
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Inhaltsverzeichnisrnrnn Part I: Deep learning and neural networks: concepts and modelsn Chapter 1: An introduction to artificial neural networksn Chapter 2: Hardware acceleration for recurrent neural networksn C. Artikel-Nr. 300453159
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - This book discusses innovative ideas in the design, modelling, implementation, and optimization of hardware platforms for neural networks. The book provides an overview of this emerging field, from principles to applications, for researchers, postgraduate students and engineers who work on learning-based services and hardware platforms. Artikel-Nr. 9781785617683
Anzahl: 2 verfügbar