Quick solutions to complex numerical problems in physics, applied mathematics, and science with SciPy
This book targets programmers and scientists who have basic Python knowledge and who are keen to perform scientific and numerical computations with SciPy.
SciPy is an open source Python library used to perform scientific computing. The SciPy (Scientific Python) package extends the functionality of NumPy with a substantial collection of useful algorithms.
The book starts with a brief description of the SciPy libraries, followed by a chapter that is a fun and fast-paced primer on array creation, manipulation, and problem-solving. You will also learn how to use SciPy in linear algebra, which includes topics such as computation of eigenvalues and eigenvectors. Furthermore, the book is based on interesting subjects such as definition and manipulation of functions, computation of derivatives, integration, interpolation, and regression. You will also learn how to use SciPy in signal processing and how applications of SciPy can be used to collect, organize, analyze, and interpret data.
By the end of the book, you will have fast, accurate, and easy-to-code solutions for numerical and scientific computing applications.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Quick solutions to complex numerical problems in physics, applied mathematics, and science with SciPy
About This Book
Who This Book Is For
This book targets programmers and scientists who have basic Python knowledge and who are keen to perform scientific and numerical computations with SciPy.
What You Will Learn
In Detail
SciPy is an open source Python library used to perform scientific computing. The SciPy (Scientific Python) package extends the functionality of NumPy with a substantial collection of useful algorithms.
The book starts with a brief description of the SciPy libraries, followed by a chapter that is a fun and fast-paced primer on array creation, manipulation, and problem-solving. You will also learn how to use SciPy in linear algebra, which includes topics such as computation of eigenvalues and eigenvectors. Furthermore, the book is based on interesting subjects such as definition and manipulation of functions, computation of derivatives, integration, interpolation, and regression. You will also learn how to use SciPy in signal processing and how applications of SciPy can be used to collect, organize, analyze, and interpret data.
By the end of the book, you will have fast, accurate, and easy-to-code solutions for numerical and scientific computing applications.
Sergio J. Rojas G. is currently a full professor of physics at Universidad Simon Bolivar, Venezuela. Regarding his formal studies, in 1991, he earned a BS in physics with his thesis on numerical relativity from the Universidad de Oriente, Estado Sucre, Venezuela, and then, in 1998, he earned a PhD in physics from the Department of Physics at City College of the City University of New York, where he worked on the applications of fluid dynamics in the flow of fluids in porous media, gaining and developing since then a vast experience in programming as an aid to scientific research via Fortran77/90 and C/C++. In 2001, he also earned a master's degree in computational finance from the Oregon Graduate Institute of Science and Technology. Sergio's teaching activities involve lecturing undergraduate and graduate physics courses at his home university, Universidad Simon Bolivar, Venezuela, including a course on Monte Carlo methods and another on computational finance. His research interests include physics education research, fluid flow in porous media, and the application of the theory of complex systems and statistical mechanics in financial engineering. More recently, Sergio has been involved in machine learning and its applications in science and engineering via the Python programming language. Erik A Christensen is a quant analyst/developer in finance and creative industries. He has a PhD from the Technical University of Denmark, with postdoctoral studies at the Levich Institute at the City College of the City University of New York and the Courant Institute of Mathematical Sciences at New York University. His interests in technology span from Python to F# and Cassandra/Spark. He is active in the meet-up communities in London! Francisco J. Blanco-Silva is the owner of a scientific consulting company-Tizona Scientific Solutions-and adjunct faculty in the Department of Mathematics of the University of South Carolina. He obtained his formal training as an applied mathematician at Purdue University. He enjoys problem solving, learning, and teaching. Being an avid programmer and blogger, when it comes to writing, he relishes finding that common denominator among his passions and skills and making it available to everyone. He coauthored Modeling Nanoscale Imaging in Electron Microscopy, Springer along with Peter Binev, Wolfgang Dahmen, and Thomas Vogt.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Artikel-Nr. 448317981
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781783987702_new
Anzahl: Mehr als 20 verfügbar