This advanced machine learning book highlights many algorithms from a geometric perspective and introduces tools in network science, metric geometry, and topological data analysis through practical application.
Whether you’re a mathematician, seasoned data scientist, or marketing professional, you’ll find The Shape of Data to be the perfect introduction to the critical interplay between the geometry of data structures and machine learning.
This book’s extensive collection of case studies (drawn from medicine, education, sociology, linguistics, and more) and gentle explanations of the math behind dozens of algorithms provide a comprehensive yet accessible look at how geometry shapes the algorithms that drive data analysis.
In addition to gaining a deeper understanding of how to implement geometry-based algorithms with code, you’ll explore:
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Colleen M. Farrelly is a senior data scientist whose academic and industry research has focused on topological data analysis, quantum machine learning, geometry-based machine learning, network science, hierarchical modeling, and natural language processing. Since graduating from the University of Miami with an MS in biostatistics, Colleen has worked as a data scientist in a vari- ety of industries, including healthcare, consumer packaged goods, biotech, nuclear engineering, marketing, and education. Colleen often speaks at tech conferences, including PyData, SAS Global, WiDS, Data Science Africa, and DataScience SALON. When not working, Colleen can be found writing haibun/haiga or swimming.
Yaé Ulrich Gaba completed his doctoral studies at the University of Cape Town (UCT, South Africa) with a specialization in topology and is currently a research associate at Quantum Leap Africa (QLA, Rwanda). His research interests are computational geometry, applied algebraic topology (topologi- cal data analysis), and geometric machine learning (graph and point-cloud representation learning). His current focus lies in geometric methods in data analysis, and his work seeks to develop effective and theoretically justified algorithms for data and shape analysis using geometric and topological ideas and methods.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. EB-9781718503083
Anzahl: 5 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 401243524
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 272 pages. 9.00x7.00x0.75 inches. In Stock. Artikel-Nr. __1718503083
Anzahl: 2 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. Artikel-Nr. V9781718503083
Anzahl: 15 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-323753
Anbieter: moluna, Greven, Deutschland
Zustand: New. Colleen M. Farrelly is a senior data scientist whose academic and industry research has focused on topological data analysis, quantum machine learning, geometry-based machine learning, network science, hierarchical modeling, and natural language proc. Artikel-Nr. 871773663
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - 'The Shape of Data shows how to use geometry- and topology-based algorithms for machine learning. The book focuses on practical applications rather than dense mathematical concepts, with coding examples using social network data, text data, medical data, and education data'. Artikel-Nr. 9781718503083
Anzahl: 1 verfügbar