Self-driving cars, natural language recognition, and online recommendation engines are all possible thanks to Machine Learning. Now you can create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, cellular automata, and clusters. Learn how to test your ML code and dive into even more advanced topics. If you are a beginner-to-intermediate programmer keen to understand machine learning, this book is for you.
Discover machine learning algorithms using a handful of self-contained recipes. Build a repertoire of algorithms, discovering terms and approaches that apply generally. Bake intelligence into your algorithms, guiding them to discover good solutions to problems.
In this book, you will:
Test your code and get inspired to try new problems. Work through scenarios to code your way out of a paper bag; an important skill for any competent programmer. See how the algorithms explore and learn by creating visualizations of each problem. Get inspired to design your own machine learning projects and become familiar with the jargon.
What You Need:
Code in C++ (>= C++11), Python (2.x or 3.x) and JavaScript (using the HTML5 canvas). Also uses matplotlib and some open source libraries, including SFML, Catch and Cosmic-Ray. These plotting and testing libraries are not required but their use will give you a fuller experience. Armed with just a text editor and compiler/interpreter for your language of choice you can still code along from the general algorithm descriptions.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Frances Buontempo is the editor of ACCU's Overload magazine (https://accu.org/index.php/journal/overload_by_cover). She has published articles and given talks centered on technology and machine learning. With a PhD in data mining, she has been programming professionally since the 1990s. During her career as a programmer, she has championed unit testing, mentored newer developers, deleted quite a bit of code and fixed a variety of bugs.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,75 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781680506204_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9781680506204
Anzahl: 2 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. GB-9781680506204
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Self-driving cars, natural language recognition, and online recommendation engines are all possible thanks to Machine Learning. Now you can create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, cellular automata, and clusters. Learn how to test your ML code and dive into even more advanced topics. If you are a beginner-to-intermediate programmer keen to understand machine learning, this book is for you. Discover machine learning algorithms using a handful of self-contained recipes. Build a repertoire of algorithms, discovering terms and approaches that apply generally. Artikel-Nr. 9781680506204
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. 236. Artikel-Nr. 384685480
Anzahl: 1 verfügbar
Anbieter: Kennys Bookstore, Olney, MD, USA
Zustand: New. 2019. 1st Edition. Paperback. . . . . . Books ship from the US and Ireland. Artikel-Nr. V9781680506204
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 218 pages. 9.50x7.75x0.75 inches. In Stock. Artikel-Nr. x-168050620X
Anzahl: 2 verfügbar