Verwandte Artikel zu Recommender Systems Meet Large Language Model Agents:...

Recommender Systems Meet Large Language Model Agents: A Survey (Foundations and Trends® in Computer Science) - Softcover

 
9781638285649: Recommender Systems Meet Large Language Model Agents: A Survey (Foundations and Trends® in Computer Science)

Inhaltsangabe

The integration of Large Language Models (LLM) and Recommender Systems (RS) has marked a transformative shift in how personalized recommendations are generated and delivered. Recommender systems, designed to predict user preferences and suggest relevant items, are ubiquitous in applications ranging from e-commerce to entertainment and social media. Historically, these systems have relied on techniques such as collaborative filtering, content-based filtering, and hybrid approaches. However, the advent of LLMs and AI agents has introduced new paradigms, significantly enhancing the capabilities and performance of recommender systems.

This monograph provides an extensive review of critical challenges, the current landscape, and future directions in the collaboration between LLM-based AI agents (LLM Agent) and recommender systems. The monograph begins with an introduction to the foundational knowledge, exploring the components of LLM agents and the applications of LLMs in recommender systems. It then delves into the symbiotic relationship between LLM agents and recommender systems, illustrating how LLM agents enhance recommender systems and how recommender systems support better LLM agents. Specifically, the overall architectures for designing LLM agents for recommendation are discussed, encompassing profile, memory, planning, and action components, along with multi-agent collaboration. Conversely, it investigates how recommender systems contribute to LLM agents, focusing on areas such as memory recommendation, plan recommendation, tool recommendation, agent recommendation, and personalized LLMs and LLM agents.

Furthermore, a critical evaluation is made of trustworthy AI agents and recommender systems, addressing key issues of safety, explainability, fairness, and privacy. Finally, potential future research directions are proposed, highlighting emerging trends and opportunities in the intersection of AI agents and recommender systems. This monograph concludes by summarizing the key insights of current research and outlining promising avenues for future exploration in this rapidly evolving field.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 11,57 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Recommender Systems Meet Large Language Model Agents:...

Beispielbild für diese ISBN

Zhu, Xi (Author)/ Wang, Yu (Author)/ Gao, Hang (Author)/ Xu, Wujiang (Author)/ Wang, Chen (Author)/ Liu, Zhiwei (Author)/ Wang, Kun (Author)/ Jin, Mingyu (Author)/ Pang, Linsey (Author)/ Weng, Qingsong (Author)/ Yu, Philip S. (Author)/ Zhang, Yongfeng (Au
Verlag: now publishers Inc, 2025
ISBN 10: 1638285640 ISBN 13: 9781638285649
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 162 pages. 6.14x0.35x9.21 inches. In Stock. Artikel-Nr. x-1638285640

Verkäufer kontaktieren

Neu kaufen

EUR 119,68
Währung umrechnen
Versand: EUR 11,57
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb