Multi-hop Question Answering (MHQA) is the task of answering natural language questions that involve extracting and combining multiple pieces of information and doing multiple steps of reasoning. The ability to answer multi-hop questions and perform multi-step reasoning can significantly improve the utility of NLP systems. But the notion of ‘multiple hops’ is somewhat abstract which results in a large variety of tasks that require multi-hop reasoning. This leads to different datasets and models that differ significantly from each other and makes the field challenging to generalize and survey. In this monograph, the authors provide a general and formal definition of the MHQA task, and organize and summarize existing MHQA frameworks. They also outline some best practices for building MHQA datasets. This monograph provides a systematic and thorough introduction to Multi-Hop Question Answering that is becoming increasingly important in practical AI systems.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,92 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781638283744_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 146 pages. 6.14x0.31x9.21 inches. In Stock. Artikel-Nr. x-1638283745
Anzahl: 2 verfügbar