Verwandte Artikel zu MLOps Engineering at Scale: Deploying Pytorch Models...

MLOps Engineering at Scale: Deploying Pytorch Models on Aws - Softcover

 
9781617297762: MLOps Engineering at Scale: Deploying Pytorch Models on Aws
  • VerlagManning Publications
  • Erscheinungsdatum2022
  • ISBN 10 1617297763
  • ISBN 13 9781617297762
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten250

EUR 14,08 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für MLOps Engineering at Scale: Deploying Pytorch Models...

Beispielbild für diese ISBN

Osipov, Carl
Verlag: Manning, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781617297762_new

Verkäufer kontaktieren

Neu kaufen

EUR 52,06
Währung umrechnen
Versand: EUR 14,08
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Carl Osipov
ISBN 10: 1617297763 ISBN 13: 9781617297762
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware - Deploying a machine learning model into a fully realized production system usually requires painstaking work by an operations team creating and managing custom servers. Cloud Native Machine Learning helps you bridge that gap by using the pre-built services provided by cloud platforms like Azure and AWS to assemble your ML system's infrastructure. Following a real-world use case for calculating taxi fares, you'll learn how to get a serverless ML pipeline up and running using AWS services. Clear and detailed tutorials show you how to develop reliable, flexible, and scalable machine learning systems without time-consuming management tasks or the costly overheads of physical hardware. about the technologyYour new machine learning model is ready to put into production, and suddenly all your time is taken up by setting up your server infrastructure. Serverless machine learning offers a productivity-boosting alternative. It eliminates the time-consuming operations tasks from your machine learning lifecycle, letting out-of-the-box cloud services take over launching, running, and managing your ML systems. With the serverless capabilities of major cloud vendors handling your infrastructure, you're free to focus on tuning and improving your models. about the book Cloud Native Machine Learning is a guide to bringing your experimental machine learning code to production using serverless capabilities from major cloud providers. You'll start with best practices for your datasets, learning to bring VACUUM data-quality principles to your projects, and ensure that your datasets can be reproducibly sampled. Next, you'll learn to implement machine learning models with PyTorch, discovering how to scale up your models in the cloud and how to use PyTorch Lightning for distributed ML training. Finally, you'll tune and engineer your serverless machine learning pipeline for scalability, elasticity, and ease of monitoring with the built-in notification tools of your cloud platform. When you're done, you'll have the tools to easily bridge the gap between ML models and a fully functioning production system. what's inside Extracting, transforming, and loading datasetsQuerying datasets with SQLUnderstanding automatic differentiation in PyTorchDeploying trained models and pipelines as a service endpointMonitoring and managing your pipeline's life cycleMeasuring performance improvements about the readerFor data professionals with intermediate Python skills and basic familiarity with machine learning. No cloud experience required. about the author Carl Osipov has spent over 15 years working on big data processing and machine learning in multi-core, distributed systems, such as service-oriented architecture and cloud computing platforms. While at IBM, Carl helped IBM Software Group to shape its strategy around the use of Docker and other container-based technologies for serverless computing using IBM Cloud and Amazon Web Services. At Google, Carl learned from the world's foremost experts in machine learning and also helped manage the company's efforts to democratize artificial intelligence. You can learn more about Carl from his blog Clouds With Carl. Artikel-Nr. 9781617297762

Verkäufer kontaktieren

Neu kaufen

EUR 55,10
Währung umrechnen
Versand: EUR 31,13
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Osipov, Carl
Verlag: Manning Publications, 2022
ISBN 10: 1617297763 ISBN 13: 9781617297762
Neu

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. &Uumlber den AutorrnrnCarl Osipov has been working in the information technology industry since 2001, with a focus on projects in big data analytics and machine learning in multi-core, distributed systems, such as service-oriented architecture . Artikel-Nr. 408052410

Verkäufer kontaktieren

Neu kaufen

EUR 54,05
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb