Many machine learning problems are too complex to be resolved by a single model or algorithm. Ensemble machine learning trains a group of diverse machine learning models to work together to solve a problem. By aggregating their output, these ensemble models can flexibly deliver rich and accurate results. Ensemble Methods for Machine Learning is a guide to ensemble methods with proven records in data science competitions and real world applications. Learning from hands-on case studies, you'll develop an under-the-hood understanding of foundational ensemble learning algorithms to deliver accurate, performant models.
About the Technology Ensemble machine learning lets you make robust predictions without needing the huge datasets and processing power demanded by deep learning. It sets multiple models to work on solving a problem, combining their results for better performance than a single model working alone. This "wisdom of crowds" approach distils information from several models into a set of highly accurate results.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gautam Kunapuli has over 15 years of experience in academia and the machine learning industry. He has developed several novel algorithms for diverse application domains including social network analysis, text and natural language processing, behaviour mining, educational data mining and biomedical applications. He has also published papers exploring ensemble methods in relational domains and with imbalanced data.
In Ensemble Methods for Machine Learning you'll learn to implement the most important ensemble machine learning methods from scratch. Each chapter contains a new case study, taking you hands-on with a fully functioning ensemble method for medical diagnosis, sentiment analysis, handwriting classification, and more. There's no complex math or theory--each method is taught in a practical and visuals-first manner. Best of all, all code is provided in Jupyter notebooks for your easy experimentation! By the time you're done, you'll know the benefits, limitations, and practical methods of applying ensemble machine learning to real-world data, and be ready to build more explainable ML systems.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 6,82 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: BooksRun, Philadelphia, PA, USA
Paperback. Zustand: Very Good. Ship within 24hrs. Satisfaction 100% guaranteed. APO/FPO addresses supported. Artikel-Nr. 1617297135-8-1
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Über den AutorrnrnGautam Kunapuli has over 15 years of experience in academia and the machine learning industry. He has developed several novel algorithms for diverse application domains including social network analysis, text and natu. Artikel-Nr. 507778790
Anzahl: 2 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Artikel-Nr. PB-9781617297137
Anzahl: 15 verfügbar
Anbieter: Speedyhen, London, Vereinigtes Königreich
Zustand: NEW. Artikel-Nr. NW9781617297137
Anzahl: 4 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Many machine learning problems are too complex to be resolved by a single model or algorithm. Ensemble machine learning trains a group of diverse machine learning models to work together to solve a problem. By aggregating their output, these ensemble models can flexibly deliver rich and accurate results. Ensemble Methods for Machine Learning is a guide to ensemble methods with proven records in data science competitions and real-world applications. Learning from hands-on case studies, you'll develop an under-the-hood understanding of foundational ensemble learning algorithms to deliver accurate, performant models.Manning, St.-Martin-Straße 82, 81541 München 350 pp. Englisch. Artikel-Nr. 9781617297137
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - Many machine learning problems are too complex to be resolved by a single model or algorithm. Ensemble machine learning trains a group of diverse machine learning models to work together to solve a problem. By aggregating their output, these ensemble models can flexibly deliver rich and accurate results. Ensemble Methods for Machine Learning is a guide to ensemble methods with proven records in data science competitions and real-world applications. Learning from hands-on case studies, you'll develop an under-the-hood understanding of foundational ensemble learning algorithms to deliver accurate, performant models. Artikel-Nr. 9781617297137
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9781617297137_new
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Artikel-Nr. 390343718
Anzahl: 3 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 350 pages. 9.25x7.37x0.88 inches. In Stock. Artikel-Nr. __1617297135
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 350 pages. 9.25x7.37x0.88 inches. In Stock. Artikel-Nr. 1617297135
Anzahl: 1 verfügbar