Verwandte Artikel zu Feature Selection and Ensemble Methods for Bioinformatics:...

Feature Selection and Ensemble Methods for Bioinformatics: Algorithmic Classification and Implementations - Hardcover

 
9781609605575: Feature Selection and Ensemble Methods for Bioinformatics: Algorithmic Classification and Implementations

Inhaltsangabe

Machine learning is the branch of artificial intelligence whose goal is to develop algorithms that add learning capabilities to computers. Ensembles are an integral part of machine learning. A typical ensemble includes several algorithms performing the task of prediction of the class label or the degree of class membership for a given input presented as a set of measurable characteristics, often called features. Feature Selection and Ensemble Methods for Bioinformatics: Algorithmic Classification and Implementations offers a unique perspective on machine learning aspects of microarray gene expression based cancer classification. This multidisciplinary text is at the intersection of computer science and biology and, as a result, can be used as a reference book by researchers and students from both fields. Each chapter describes the process of algorithm design from beginning to end and aims to inform readers of best practices for use in their own research.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Feature Selection and Ensemble Methods for Bioinformatics: Algorithmic Classification and Implementations offers a unique perspective on machine learning aspects of microarray gene expression based cancer classification. This multidisciplinary text is at the intersection of computer science and biology and, as a result, can be used as a reference book by researchers and students from both fields. Each chapter describes the process of algorithm design from beginning to end and aims to inform readers of best practices for use in their own research.

Reseña del editor

Machine learning is the branch of artificial intelligence whose goal is to develop algorithms that add learning capabilities to computers. Ensembles are an integral part of machine learning. A typical ensemble includes several algorithms performing the task of prediction of the class label or the degree of class membership for a given input presented as a set of measurable characteristics, often called features. Feature Selection and Ensemble Methods for Bioinformatics: Algorithmic Classification and Implementations offers a unique perspective on machine learning aspects of microarray gene expression based cancer classification. This multidisciplinary text is at the intersection of computer science and biology and, as a result, can be used as a reference book by researchers and students from both fields. Each chapter describes the process of algorithm design from beginning to end and aims to inform readers of best practices for use in their own research.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagMedical Information Science Reference
  • Erscheinungsdatum2011
  • ISBN 10 1609605578
  • ISBN 13 9781609605575
  • EinbandTapa dura
  • SpracheEnglisch
  • Anzahl der Seiten460
  • Kontakt zum HerstellerNicht verfügbar

EUR 5,85 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Feature Selection and Ensemble Methods for Bioinformatics:...

Beispielbild für diese ISBN

Okun, Oleg
ISBN 10: 1609605578 ISBN 13: 9781609605575
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781609605575_new

Verkäufer kontaktieren

Neu kaufen

EUR 251,44
Währung umrechnen
Versand: EUR 5,85
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb