Verwandte Artikel zu Jordan Canonical Form: Theory and Practice (Synthesis...

Jordan Canonical Form: Theory and Practice (Synthesis Lectures on Mathematics and Statistics) - Softcover

 
9781608452507: Jordan Canonical Form: Theory and Practice (Synthesis Lectures on Mathematics and Statistics)

Inhaltsangabe

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V - > V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (lESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. Table of Contents: Fundamentals on Vector Spaces and Linear Transformations / The Structure of a Linear Transformation / An Algorithm for Jordan Canonical Form and Jordan Basis

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development of JCF. After beginning with background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over the field of complex numbers C, and let T : V → V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: Let A be a square matrix with complex entries. Then A is similar to a matrix J in Jordan Canonical Form, i.e., there is an invertible matrix P and a matrix J in Jordan Canonical Form with A = PJP-1. We further present an algorithm to find P and J, assuming that one can factor the characteristic polynomial of A. In developing this algorithm we introduce the eigenstructure picture (ESP) of a matrix, a pictorial representation that makes JCF clear. The ESP of A determines J, and a refinement, the labeled eigenstructure picture (ℓESP) of A, determines P as well. We illustrate this algorithm with copious examples, and provide numerous exercises for the reader. Table of Contents: Fundamentals on Vector Spaces and Linear Transformations / The Structure of a Linear Transformation / An Algorithm for Jordan Canonical Form and Jordan Basis

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagMorgan & Claypool Publishers
  • Erscheinungsdatum2009
  • ISBN 10 1608452506
  • ISBN 13 9781608452507
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten108
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Sehr gut
Weintraub Steven H. Jordan Canonical...
Diesen Artikel anzeigen

EUR 3,00 für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783031035265: Jordan Canonical Form: Theory and Practice

Vorgestellte Ausgabe

ISBN 10:  3031035267 ISBN 13:  9783031035265
Verlag: Springer, 2009
Softcover

Suchergebnisse für Jordan Canonical Form: Theory and Practice (Synthesis...

Beispielbild für diese ISBN

Weintraub Steven H.
Verlag: Morgan & Claypool, 2009
ISBN 10: 1608452506 ISBN 13: 9781608452507
Gebraucht Softcover

Anbieter: Antiquariat Bücherkiste, Wuppertal, Deutschland

Verkäuferbewertung 3 von 5 Sternen 3 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Softcover. Zustand: Sehr gut. Weintraub Steven H. Jordan Canonical Form Theory and Practice - Synthesis Lectures on Mathematics and Statistics SC - 19 x 23 cm - Verlag: Morgan & Claypool - 2009 - ISBN: 9781608452507 - 96 Seiten - Englisch Klappentext: Jordan Canonical Form (JCF) is one of the most important, and useful, concepts in linear algebra. The JCF of a linear transformation, or of a matrix, encodes all of the structural information about that linear transformation, or matrix. This book is a careful development ofJCE After beginning With background material, we introduce Jordan Canonical Form and related notions: eigenvalues, (generalized) eigenvectors, and the characteristic and minimum polynomials. We decide the question of diagonalizability, and prove the Cayley-Hamilton theorem. Then we present a careful and complete proof of the fundamental theorem: Let V be a finite-dimensional vector space over thefield ofcomplex numbers C, and let T: V --> 5 V be a linear transformation. Then T has a Jordan Canonical Form. This theorem has an equivalent statement in terms of matrices: LetA be a square matrix with complex entries. Then A is similar to a matrixJ in Jordan Canonical Form, i.e., there is an invertible matrix P a matrixJ in Jordan Canonical Form withA pp-l. We further present an algorithm to find P andJ, assuming that one can factor the characteristic polynomial ofA. In developing this algorithm we introduce the eigenstructure Picture (ESP) of a matrix, a pictorial representation that makes JCF Clear. The ESP of A determines J, and a refinement, the labelled eigenstructure Picture VESP) ofA, determines P as well. We illustrate this algorithm With copious examples, and provide numerous exercises for the reader. Zustand: SEHR GUT! Einband mit gnaz leichten Gebrauchsspuren, innen sehr sauber. Size: 19 x 23 Cm. Buch. Artikel-Nr. 035566

Verkäufer kontaktieren

Gebraucht kaufen

EUR 15,00
Währung umrechnen
Versand: EUR 3,00
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb