Verwandte Artikel zu Collaborative Filtering Recommender Systems: 13 (Foundations...

Collaborative Filtering Recommender Systems: 13 (Foundations and Trends® in Human-Computer Interaction) - Softcover

 
9781601984425: Collaborative Filtering Recommender Systems: 13 (Foundations and Trends® in Human-Computer Interaction)

Inhaltsangabe

Recommender systems are an important part of the information and e-commerce ecosystem. They represent a powerful method for enabling users to filter through large information and product spaces. Nearly two decades of research on collaborative filtering have led to a varied set of algorithms and a rich collection of tools for evaluating their performance. Research in the field is moving in the direction of a richer understanding of how recommender technology may be embedded in specific domains. The differing personalities exhibited by different recommender algorithms show that recommendation is not a one-size-fits-all problem. Specific tasks, information needs, and item domains represent unique problems for recommenders, and design and evaluation of recommenders needs to be done based on the user tasks to be supported. Effective deployments must begin with careful analysis of prospective users and their goals. Based on this analysis, system designers have a host of options for the choice of algorithm and for its embedding in the surrounding user experience. Collaborative Filtering Recommender Systems provides a broad overview of the current state of collaborative filtering research. It discusses the core algorithms for collaborative filtering and traditional means of measuring their performance against user rating data sets. It then moves on to discuss building reliable, accurate data sets; understanding recommender systems in the broader context of user information needs and task support; and the interaction between users and recommender systems. Collaborative Filtering Recommender Systems provides both practitioners and researchers with an introduction to the important issues underlying recommenders and current best practices for addressing these issues.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Recommender systems are an important part of the information and e-commerce ecosystem. They represent a powerful method for enabling users to filter through large information and product spaces. Nearly two decades of research on collaborative filtering have led to a varied set of algorithms and a rich collection of tools for evaluating their performance. Research in the field is moving in the direction of a richer understanding of how recommender technology may be embedded in specific domains. The differing personalities exhibited by different recommender algorithms show that recommendation is not a one-size-fits-all problem. Specific tasks, information needs, and item domains represent unique problems for recommenders, and design and evaluation of recommenders needs to be done based on the user tasks to be supported. Effective deployments must begin with careful analysis of prospective users and their goals. Based on this analysis, system designers have a host of options for the choice of algorithm and for its embedding in the surrounding user experience. Collaborative Filtering Recommender Systems provides a broad overview of the current state of collaborative filtering research. It discusses the core algorithms for collaborative filtering and traditional means of measuring their performance against user rating data sets. It then moves on to discuss building reliable, accurate data sets; understanding recommender systems in the broader context of user information needs and task support; and the interaction between users and recommender systems. Collaborative Filtering Recommender Systems provides both practitioners and researchers with an introduction to the important issues underlying recommenders and current best practices for addressing these issues.

Biografía del autor

Konstan is co-founder of Net Perceptions, the leading real-time consumer marketing company on the Internet and winner of the MIT Sloan School's award for e-commerce technology. He is also associate professor of computer science and engineering at the University of Minnesota.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagNow Publishers Inc
  • Erscheinungsdatum2011
  • ISBN 10 1601984421
  • ISBN 13 9781601984425
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten106
  • Kontakt zum HerstellerNicht verfügbar

EUR 11,74 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Collaborative Filtering Recommender Systems: 13 (Foundations...

Beispielbild für diese ISBN

Michael D. Ekstrand
Verlag: Now Publishers, 2011
ISBN 10: 1601984421 ISBN 13: 9781601984425
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 106 pages. 8.98x6.14x0.39 inches. In Stock. Artikel-Nr. x-1601984421

Verkäufer kontaktieren

Neu kaufen

EUR 84,52
Währung umrechnen
Versand: EUR 11,74
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Ekstrand, Michael D; Riedl, John T; Konstan, Joseph A
Verlag: Now Publishers, 2011
ISBN 10: 1601984421 ISBN 13: 9781601984425
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9781601984425_new

Verkäufer kontaktieren

Neu kaufen

EUR 95,28
Währung umrechnen
Versand: EUR 5,85
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb