Verwandte Artikel zu Discriminative Learning for Speech Recognition: Theory...

Discriminative Learning for Speech Recognition: Theory and Practice (Synthesis Lectures on Speech and Audio Processing) - Softcover

 
9781598293081: Discriminative Learning for Speech Recognition: Theory and Practice (Synthesis Lectures on Speech and Audio Processing)

Inhaltsangabe

In this book, we introduce the background and mainstream methods of probabilistic modeling and discriminative parameter optimization for speech recognition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (MMI), minimum classification error, and minimum phone/word error. The unification is presented, with rigorous mathematical analysis, in a common rational-function form. This common form enables the use of the growth transformation (or extended Baum–Welch) optimization framework in discriminative learning of model parameters. In addition to all the necessary introduction of the background and tutorial material on the subject, we also included technical details on the derivation of the parameter optimization formulas for exponential-family distributions, discrete hidden Markov models (HMMs), and continuous-density HMMs in discriminative learning. Selected experimental results obtained by the authors in firsthand are presented to show that discriminative learning can lead to superior speech recognition performance over conventional parameter learning. Details on major algorithmic implementation issues with practical significance are provided to enable the practitioners to directly reproduce the theory in the earlier part of the book into engineering practice. Table of Contents: Introduction and Background / Statistical Speech Recognition: A Tutorial / Discriminative Learning: A Unified Objective Function / Discriminative Learning Algorithm for Exponential-Family Distributions / Discriminative Learning Algorithm for Hidden Markov Model / Practical Implementation of Discriminative Learning / Selected Experimental Results / Epilogue / Major Symbols Used in the Book and Their Descriptions / Mathematical Notation / Bibliography

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

In this book, we introduce the background and mainstream methods of probabilistic modeling and discriminative parameter optimization for speech recognition. The specific models treated in depth include the widely used exponential-family distributions and the hidden Markov model. A detailed study is presented on unifying the common objective functions for discriminative learning in speech recognition, namely maximum mutual information (MMI), minimum classification error, and minimum phone/word error. The unification is presented, with rigorous mathematical analysis, in a common rational-function form. This common form enables the use of the growth transformation (or extended Baum–Welch) optimization framework in discriminative learning of model parameters. In addition to all the necessary introduction of the background and tutorial material on the subject, we also included technical details on the derivation of the parameter optimization formulas for exponential-family distributions, discrete hidden Markov models (HMMs), and continuous-density HMMs in discriminative learning. Selected experimental results obtained by the authors in firsthand are presented to show that discriminative learning can lead to superior speech recognition performance over conventional parameter learning. Details on major algorithmic implementation issues with practical significance are provided to enable the practitioners to directly reproduce the theory in the earlier part of the book into engineering practice.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Befriedigend
Ex-library with the usual features...
Diesen Artikel anzeigen

EUR 35,69 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783031014291: Discriminative Learning for Speech Recognition: Theory and Practice (Synthesis Lectures on Speech and Audio Processing)

Vorgestellte Ausgabe

ISBN 10:  3031014294 ISBN 13:  9783031014291
Verlag: Springer, 2008
Softcover

Suchergebnisse für Discriminative Learning for Speech Recognition: Theory...

Beispielbild für diese ISBN

Xiaodong He; Li Deng
Verlag: Morgan & Claypool, 2008
ISBN 10: 1598293087 ISBN 13: 9781598293081
Gebraucht Soft Cover

Anbieter: BookOrders, Russell, IA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Soft Cover. Zustand: Good. Ex-library with the usual features. Library label on front cover. The interior is clean and tight. Binding is good. Cover shows light wear. Ex-Library. Artikel-Nr. 122061

Verkäufer kontaktieren

Gebraucht kaufen

EUR 35,01
Währung umrechnen
Versand: EUR 35,69
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb